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ABSTRACT
Airbnb is an online marketplace that connects hosts and guests to
unique stays and experiences. When guests stay at homes booked
on Airbnb, there are a small fraction of stays that lead to support
needed from Airbnb’s Customer Support (CS), which may cause
inconvenience to guests and hosts and require Airbnb resources
to resolve. In this work, we show that instances where CS support
is needed may be predicted based on hosts and guests behavior.
We build a model to predict the likelihood of CS support needs
for each match of guest and host. The model score is incorporated
into Airbnb’s search ranking algorithm as one of the many factors.
The change promotes more reliable matches in search results and
significantly reduces bookings that require CS support.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems → Online shopping; • Applied computing →
Online shopping.

KEYWORDS
Search Ranking, Customer Support, Two-sided Marketplace, AUC
Maximization, Neural Networks

1 INTRODUCTION
As of December 31, 2023, Airbnb had more than 7.7 million active
listings from more than 5 million hosts worldwide [2]. While the
platform invests heavily on its growth, it also strives to provide
pleasant trip experience to both guests and hosts. In 2022, Airbnb
launched AirCover that provides comprehensive protection for
guests and hosts. For example, if a host cancels a reservation within
30 days of check-in, Airbnb provides support for finding a similar
place, depending on availability at comparable pricing [1].

While Airbnb provides Customer Support (CS) and Aircover,
ideally, the need for CS support is minimized in the first place. That
led to the key question of this paper: whether CS support needs
may be predicted. If they are, some of them might be preventable
before they happen and there is less need to contact CS. When we
started this work, we had some evidence that they are. It is known
that matching a new guest with a new host is more likely to require
CS support as both parties are unfamiliar with how Airbnb works.

Another example is same day bookings where more responsive
hosts may result in less CS support needed.

Based on the evidence, we set out to build predictive models on
whether a booking may result in CS support needs. From offline
evaluation, we confirmed that our models are able to predict it to
some extent. By incorporating the model in search ranking as one
of the many considerations, we promote more reliable matching
between guests and hosts, thereby preventing CS support needs
before they happen.

2 RELATEDWORK
At Airbnb, search is the major interface where a guest is matched
with a home given specific query parameters including location,
dates and number of guests. During the match, a guest goes over a
ranked list of homes and determines which one to book. Because
of that, search ranking is one of the major levers for Airbnb to
optimize business metrics. There are many different business met-
rics that can be optimized in search and recommendation systems.
Ranking typically focuses on optimizing conversions. In Airbnb, we
have been optimizing search ranking, either by directly predicting
an uncancelled booking [9], or by adopting multi-task models to
optimize multiple events through the guests’ search journey [13].

Besides conversions, user satisfaction is another important busi-
ness metric that is often optimized on search products for two
sided marketplaces. User satisfaction is sometimes indirectly mea-
sured based on user engagement signals such as time between visits
or retention rates. Alternatively, surveys are used to directly ask
customers to rate their satisfaction. Search engines [7][8] make con-
tinuous updates to their ranking algorithms to reduce the amount
of low quality contents and fake news in their search results. So-
cial media platforms [11] combine multiple user actions (e.g. clicks
and likes) in their ranking algorithms, and they additionally ap-
ply integrity-related scores in the final stage to remove harmful
contents. Video recommendation systems [17][14] uses multi-task
learning to optimize both user engagement and user satisfaction
jointly to improve recommendation quality. E-commerce site [10]
uses multi-objective optimization algorithms to balance between
objectives such as product quality and purchase likelihood.

3 APPROACH
We start by formulating a binary classification problem. To train
a classifier, we construct a data set from past bookings on our
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platform. Lastly, the predicted likelihood from the classifier is in-
corporated into the ranking function in Airbnb homes search to
help prevent CS support required.

Figure 1: Time from bookings to CS support needs

3.1 Binary Classification
We formulate a binary classification problem for predicting

𝑝 (CS support needs|booking)

. In words, our training examples are all the historical bookings,
and positive examples are bookings that had CS support needs.
Our models need to predict future outcomes that are significantly
delayed; while CS support might be required anytime between
booking and check outs (or even after that) — see Figure 1 for a
distribution —, we are trying to predict the probability at the time
of bookings.

Thus, in constructing our data set, one of the key considerations
is determining an attribution window, i.e. number of days to wait
from a booking to determine a label. To increase coverage, we need
to use a longer attribution window. On the other hand, using a
longer attribution window prevents us from using the most recent
data and it also has implications on running online A/B experiments.
When we run an online experiment with a new search ranking
algorithm, the experiment (and the new algorithm) is applied for
a fixed time period but its outcome — whether a booking made
during the experiment led to CS support needs — should be tracked
for an extended period of time (at least longer than the attribution
window).

In terms of input features, we consider all information avail-
able in our search ranking system since the model will be scored
inside the system. When a guest searches for homes on Airbnb,
they typically set filters such as destination, check in/out dates
and number of guests. Given the search filters, we retrieve all the
available homes that match the filters. For each available home,
we will estimate the likelihood of CS support needs if the home is
booked by the searcher with the search filters. Thus, we formulate
features about the searcher, home and its hosts. We also found that
search filters play important roles in predicting CS support needs.

For example, same day bookings tend to require more CS support
than other types of bookings.

3.2 Maximizing Area under the ROC Curve
The area under an ROC curve (AUC) is an evaluation metric used
in many classification applications [5]. One interpretation of AUC
is that, given pairs of positive and negative examples, it computes
a ratio of pairs where a positive example is assigned a higher score
by a model than a negative example is (see Lemma 1 in Cortes et
al. [5]). Because of that, AUC is often used as a metric for ranking
applications and we also used it as our main evaluation metric of
models.

During model training, there are many approaches for directly
maximizing AUC [16]. One simple method is, for a loss function,
using an approximation of AUC based on sigmoid functions [4].
Specifically, an 𝑖-th example 𝑥𝑖 gets assigned a logit 𝑓 (𝑥𝑖 ), where 𝑓
is a model. Next, between positive and negative examples, pairwise
logit differences are computed and the differences are fed into
sigmoids to form a loss function. Essentially, the loss function we
optimize is equivalent to a cross entropy loss with only positive
examples where each positive example is a pair of original positive
and negative examples. Formally, it is computed as:

−
∑︁

𝑥𝑖 ∈positives

∑︁
𝑥 𝑗 ∈negatives

log𝜎 (𝑓 (𝑥𝑖 ) − 𝑓 (𝑥 𝑗 ))

, where 𝜎 is a sigmoid function.

3.3 Neural Networks
There are different classes of models that can be used for classifica-
tion and we choose to use neural networks [6] for our application.
One advantage of neural networks is that they can learn represen-
tation of categorical features during the course of training, which
reduces efforts on manual feature engineering. It also guarantees
parity with the current architecture and infrastructure as our main
ranking models are also neural networks [13].

To use neural networks, we normalized all continuous features
so that each feature has zero mean and unit variance. For features
with skewed distribution (e.g. number of past bookings), we also
applied a logarithmic transformation before normalization. Each
categorical feature is mapped to an embedding vector that is learned
during the optimization process.

3.4 Ranking Function
Our current ranking function is a linear combination of predicted
probabilities for many different events [3] including clicks on search
results, sending booking requests and cancellations [13]. In the exist-
ing linear combination, we add one more term based on likelihood
of CS support needs given a booking.

4 EXPERIMENTS
We optimized neural networks architectures and hyperparameters
based on AUC metrics on a hold-out set. Another consideration
was minimizing latency as these models will be computed for each
search request at serving time. Finally, we choose one model and
then run online A/B experiments to measure impacts on business
metrics such as number of bookings and CS contacts.
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4.1 Data Set
To train models, we collected historical bookings on Airbnb. Among
the bookings that are past their attribution windows — thus they
have fixed labels —, bookings made during the last three weeks
were held out for evaluation, while those made in the year leading
up to these three weeks were used for training.

4.2 Hyperparameter Search
We trained feed-forward neural networks with different depths
and widths. For a loss function, either a cross entropy loss or the
aforementioned approximation of AUC was used. We also varied
other hyperparameters such as optimizers, regularizers and activa-
tion functions. Lastly, a learning rate scheduler was used to halve a
learning rate when a plateau is reached on a validation set.

We list a few combinations and their AUC metrics in Table 1.
Since AUC is a probability of correct ordering on pairs of positive
and negative examples [5], a random guesser would achieve an
AUC of 0.5. Our models achieved AUC over 0.73, meaning CS sup-
port needs are predictable to some extent at the time of bookings.
As expected, directly maximizing AUC outperformed minimizing
cross entropy loss. Since positive examples — bookings with CS
support needs — are rare, we used a large batch size. Increasing the
number of hidden layers enhances the validation AUC, although
with diminishing returns.

As our models need to serve online traffic, latency should be
minimized. We assume that latency from model inference would be
roughly proportional to the number of multiplications in a model
since we are using CPUs to serve these models. In Table 1, we
computed the number of multiplications in each architecture by
using input dimension of 209 and number of parameters in the
feed-forward neural networks. To balance between validation AUC
and latency, we decided to use the model from the first row in Table
1.

Figure 2: Calibration of model score using a Platt scaler. The
line for calibrated score (red circle) is close to a diagonal line,
which means the scaler provides well-calibrated probabili-
ties.

4.3 Offline Tuning of Ranking Function
Since we train our models to maximize AUC, a resulting model does
not provide calibrated probabilities. A Platt scaler [12] is used to
calibrate model scores into conditional probabilities. The procedure

Figure 3: Trade off between normalized DCGB and normal-
ized DCGC as a multiplier 𝛼 is varied. We need to increase
both of the metrics. For the details of metrics, please refer to
section 4.3.

is akin to training a logistic regressor with a single feature where
the single feature is a logit from the underlying model 𝑓 (𝑥) as:

𝑝 (CS support needs|booking) = 1
1 + exp(−𝑤𝑓 (𝑥) − 𝑏)

. Figure 2 demonstrates the effectiveness of a Platt scaler for our
application.

As mentioned in the previous section, our current ranking func-
tion is a linear combination of multiple conditional probabilities of
different events in the conversion funnel. In the linear combination,
we add one more term as:

(current ranking function)+𝛼 log
(
1−𝑝 (CS support needs|booking)

)
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Table 1: A few representative combinations of loss function, architectures and hyperparameters. ‘64-32’ means that there are
two hidden layers with 64 and 32 units respectively. The model from the first row is used in our online experiment.

Loss Architecture Hyperparameters # Multiplications Validation AUC Train AUC

AUC 128-64-32 with Relu batch size=5000, adam optimizer,
l2 regularization=0.0005 36992 0.7321 0.7426

AUC 64-32 with Relu same as the 1st row 15424 0.7314 0.7396
AUC 512-256-64-32 with Relu same as the 1st row 256512 0.7326 0.7433
Cross entropy same as the 1st row same as the 1st row 36992 0.7225 0.7317
AUC 128-64-32 with Leaky Relu same as the 1st row 36992 0.7314 0.7421

The multiplier 𝛼 is determined by balancing two offline metrics
on past search sessions. Each session consists of a query, a set
of homes appeared in search results, and a label on which home
is booked. In each session, a specific ranking function provides
an ordering of the homes. For each ordering, we can compute a
Discounted Cumulative Gain (DCG) [15] with a booking label as:

DCGB =

𝑁∑︁
𝑖=0

𝑟𝑖

log(2.4 + 𝑖)

, where𝑁 is a number of homes and 𝑟𝑖 is 1 if the 𝑖-th home is booked.
Similarly, we compute a DCG with conditional probabilities of a
booking without CS support needs for each home as:

DCGC =

𝑁∑︁
𝑖=0

1 − 𝑝 (CS support needs|𝑖-th home is booked)
log(2.4 + 𝑖)

, where the conditional probabilities in numerator is from our model
and Platt scaler.

On a data set of past search sessions from 7 days, we vary 𝛼 and
compute the two metrics DCGB and DCGC. The two metrics are
normalized for each session so that they range between 0 and 1. The
normalized metrics from a parameter sweep is presented in Figure 3.
As we increase 𝛼 , normalized DCGB declines, which means booked
homes are ranked lower; but normalized DCGC improves, meaning
that more reliable matchings are promoted in search results. It is
also clear that using log probability provides a better trade-off than
using the probability. We chose a few values for 𝛼 to run online
A/B experiments.

4.4 Online A/B Experiments
During our online experiments, we split searchers into multiple
cohorts, and each cohort used a specific value of 𝛼 , which controls
the strength of our model in the ranking function. For each cohort,
we measured business metrics including number of bookings and
also number of bookingswith CS support needs. As expected, higher
𝛼 reduced both number of bookings and number of bookings with
CS support needs. We were able to find a right value of 𝛼 that
significantly reduces bookings with CS support needs while not
negatively impacting overall booking conversions. Specifically, with
the launched value of 𝛼 , we reduced bookings with CS support
needs by 3.7% and also lowered host cancellations by 2.7% — host
cancellations often lead to CS contacts. These metrics align with our
expectation that a better matching between guests and hosts can
reduce CS support needs and benefit both sides in the marketplace.

5 DISCUSSION
We started from an assumption that some CS support needs might
be predicted at the time of bookings. The assumption led us to build
a binary classifier to predict if a booking — a match between a guest
and a home (and the host) — would lead to CS support needs or not.
From our offline analysis, we confirmed that CS support needs are
predictable to some extent at the time of bookings.

By incorporating our prediction model in search ranking, we
achieved a significant reduction in CS support needs without re-
ducing overall conversions. Furthermore, we believe that reducing
CS support needs can improve satisfaction of our guests and hosts,
helping our guests to book more on Airbnb and also assisting our
hosts in growing their business.

For future work, we can extend this approach to other types
of user feedback to further improve trip experiences. To enhance
model performance, we could experiment with more advanced
model architectures and different loss functions. Another direction
is exploring more ways to combine multiple model scores in a
ranking function to better balance different business goals.
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