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ABSTRACT

This paper presents a study on the application and learning of list-
ing embeddings in Airbnb’s two-sided marketplace. Specifically,
we discuss the architecture and training of a neural network em-
bedding model using guest side engagement data, which is then
applied to host-side product surfaces. We address the key technical
challenges we encountered, including the formulation of negative
training examples, correction of training data sampling bias, and the
scaling and speeding up training with the help of in-model caching.
Additionally, we discuss our comprehensive approach to evalua-
tion, which ranges from in-batch metrics and vocabulary-based
evaluation to the properties of similar listings. Finally, we share our
insights from utilizing listing embeddings in Airbnb products, such
as host calendar similar listings.
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1 INTRODUCTION

Airbnb is an online marketplace for sharing homes and experiences.
Hosts list their properties, which guests book for their stays. In
order to facilitate the matching of listings and guests, Airbnb pro-
vides numerous products and services to both hosts and guests.
Many of these tools are based on the ability to compare listings, i.e.
finding similar listings or listings that may be viewed as equivalent
substitutes. A naive approach of comparing attributes of listings
enables interpretable and efficient comparisons, however, it cannot

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

TSMO °24, August 26, 2024, Barcelona, Spain

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Dekun Zou
dekun.zou@airbnb.com
Airbnb, Inc.

San Francisco, CA, USA

capture the nuances of listing properties, their complex features
such as text and images; and it is not easily tunable for product
needs. In this paper, we present an embedding based solution to
quantitatively measure similarities of Airbnb listings.

Originally developed for text [13, 14], embedding models have
been generalized to other domains of recommender systems [16]
and have been used for text, image, product, document, audio
items. The key idea is to find an encoding function that trans-
lates item’s features (in our domain, it is a listing) into a vector
(embedding) which represents the item in a high dimensional space.
This approach has also been adopted within other two-sided mar-
ketplaces [2, 3, 5] to improve its efficiency.

In particular, we use guest-side engagement data to learn an
encoder (a neural network) that translates listing features into em-
bedding space where similar listings are close to each other. As a
model, we leveraged the state-of-the-art two-tower neural network
architecture. The first tower, denoted as the Signal Tower, repre-
sents the listings with which a guest interacted before a booking
occurs. The second tower, denoted as the Label Tower, represents
the booking. When training such a model for the domain of listings
and guests, we faced the following challenges:

o Negative examples overfitting: Our guest engagement
data naturally has only positive examples (i.e., booked list-
ings), and we need to find ways to generate negative exam-
ples. The typical approach of using random negatives often
leads to overfitting on the location features of listings, as
the model can easily guess the correctly booked listing by
using location proximity. We investigated various strategies
for selecting hard negatives, which force the model to learn
from features other than location.

¢ Bias towards popular listings: Typically, guests engage
most with popular listings, thus skewing the training data
towards the features of these popular listings. This leads to
reduced performance when applied uniformly to all listings
in production. To account for this bias in the training data, we
explored adjusting the weight of each training data example
based on listing popularity, thus giving more importance to
long-tail cases.

e Scaling up the training data size: The main bottleneck in
training our embedding model is the large I/O cost associated
with reading the training data. In our case, each training
example consists of more than 10 listings (viewed/booked
listings), with each listing having over 100 features. This
results in a significant increase in the size of our training
data. Importantly, most of the features, such as location and
number of bedrooms, are fairly static. Thus, we explored the
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opportunity to cache them in order to reduce training time
and cost.

In our domain, most applications don’t directly use embeddings
but are based on similar listing sets. Thus, there is a need for an
additional step that involves finding the most similar listings (em-
beddings) for a given target listing embedding. The brute force
search is computationally prohibitive, so we explored approximate
k-nearest neighbor search solutions (also denoted as ANN) for
embedding retrieval, such as Meta’s FAISS [11] and Tensorflow’s
ScaNN [12].

Due to the multistep process of producing similar listings, we
need to holistically evaluate the performance at every step and
end-to-end. This paper discusses our approach to evaluation, where
we measure the effectiveness of the embedding model at the level
of embeddings, i.e., its ability to correctly predict guest preferences
for similar listings. Additionally, we present our evaluation of the
qualities of similar listings, which are important for potential ap-
plications (such as sensitivity of similar listings to feature changes
and key feature similarity like distance).

Finally, we discuss the key applications of listing embeddings in
the context of Airbnb’s two-sided marketplace. First, we describe
the applications of listing embedding and similar listing at the host
level of the marketplace, such as Host Calendar and List-Your-Space
products. Second, we discuss potential applications on the guest
side of the marketplace, such as recommending similar listings to
guests or offering them substitute listings in the event of canceled
reservations.

The paper is structured as follows. Section 2 presents the overall
architecture of the listing embeddings and the generation of similar
listings. Section 3 provides the details of the training data, archi-
tecture, and scaling of the embedding model. Section 4 discusses
the generation of similar listings. Section 5 presents our holistic
evaluation of the listing embedding model, the properties of similar
listings, and the sensitivity and importance of features. Section 6
discusses the product applications, and finally, Section 7 concludes
the paper.

2 SYSTEM OVERVIEW

This section describes the overall architecture of the embedding
model and the generation of similar sets. In order to support prod-
ucts with similar listing sets, we need to have components for
training data generation, model training, and online serving, which
are depicted in Figure 1.

During the training data generation, we collect historical guest
engagement data, which consists of guest view/booking sessions.
We augment this data with listing features, such as the number
of bedrooms, capacity, rating, and produce training example files.
The current implementation is based on Apache Spark [20]. The
training data job supports three modes of data generation: training,
validation, and inference data. It lands the output data in both the
Apache Hive format (for analytics, debugging) and the TensorFlow
record format (for training).

In order to run training, we implemented the model code in
Python and TensorFlow [8] (see Section 3 for more details). We
ran distributed training on Airbnb’s internal ML training infra that
integrated with Horovod [15]. The output of a job is a serialized
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model that is deployed for serving (to TensorFlow serving or other
serving platforms)

To support a broad range of applications, we facilitate both online
and offline serving of listing embeddings and similar listing sets.
For offline similar listing generation, we run daily Airflow jobs
that generate Airbnb listing embeddings and retrieve the similar
listings using ANN. These embedding/similar sets are available
for analytics and serving when freshness is not critical. We also
support online serving (not shown in Figure 1) is based on fetching
listing features online and invoking the embedding model. We also
facilitate ANN search and any post-processing logic (i.e., enforcing
geo-distance boundaries, availability checking, and so on.).

3 MODEL

This section presents the architecture of the embedding model as
well as the details of the training data. We also discuss the specific
changes we made to tune the model characteristics for the domain
of Airbnb listings and their application on marketplace product
surfaces.

3.1 Training Data and Features

The embedding model is learned from our guest session data, where
each session consists of a sequence of viewed listings that result in
one booked listing. Each training example can be viewed as an in-
stance of a guest demand signal expressed through a view/booking
session. Specifically, each training example is obtained in the fol-
lowing way:

e Fetch all bookings of the listings that have had at least N
bookings in the past.

e For each booking, collect all prior long views (greater than T
seconds) within a window of M days prior to the booking.

e Remove duplicates for each booking’s views.

Note: M, N, T are parameters that may be different for different geo
regions.

Although it is possible to learn listing embeddings just using
the listing IDs of training examples (similarly to [10]), we also
augmented each listing with its features. The primary reason for
this is to handle the cold start problem of newly created listings
or listings without a significant amount of engagements, where
there are not enough guest view sessions in the training data, thus
necessitating reliance on the listing features.

Each signal and label listing is augmented with the following
features:

e Listing properties: number of bathrooms, bedrooms, beds,
its capacity, listing tier and type, and amenities.

¢ Listing location: country, city, state, latitude/longitude, and
zip code.

o Listing ratings and reviews: accuracy, cleanliness, check-
in process, location, value, number of five-star reviews, and
total number of reviews.

e Listing images derived features: image quality scores,
cover image amenities, and cover image room type.

o Other: whether the listing offers instant booking, the can-
cellation policy, and the number of days the listing has been
posted.
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Figure 1: System Overview

Each input feature is processed either as dense or categorical. Each
categorical feature is encoded as an embedding. Typically, the size
of the embedding is determined as follows [1]:

0.25 (l)
In most cases, the number of categorical values is large, and
we only use those categories that have sufficient coverage (more
than 1K training examples with a given value). To find the optimal
cut-off threshold, we conducted several experiments to evaluate the
trade-offs between model performance and the sizes of embedding
vocabularies. Reducing the size of categorical feature embeddings
using the techniques like Binary Code based Hash Embeddings [17]
is considered in the future work. For each dense feature, we apply
a normalization process where we shift and scale inputs into a
distribution centered around 0 with a standard deviation of 1.

embedding_dimension = number_of_categories

3.2 Model Architecture

Based on the training data and listing features (refer to Section 3.1
for more details), we designed and implemented a neural network
model for embedding learning. For each session, the model en-
codes a sequence of viewed listings into a signal embedding and its
corresponding booked listing into a label embedding (of the same
dimension as the input). It then forces these two embeddings to be
similar for positive examples and dissimilar for negative ones.

We adopt a two-tower neural network model (Figure 2), which
is widely used by researchers and machine learning practitioners
alike [10, 16]. There are different variations of this architecture,
where the underlying data can be modeled as user/item or item/item
interactions. In our case, we model the problem as listing/listing
(each tower encodes a listing or its sequence). The main reason
for this is that, for most targeted applications, we focus on the
properties of listings as a determining factor of listing similarity
rather than the properties of users (guests) who view or book those
listings.

Overall, we consider the following advantages provided by a
neural network model:

¢ Rich features: A neural network can ingest diverse sig-
nals such as dense and categorical features, image or text
embeddings in a unified manner.

o Scale: network training can be scaled to billions of training
examples with the assistance of distributed learning and
training optimization techniques, such as in-model caching.

o Architecture tuning: The design and training of a neu-
ral network can be easily adjusted to meet varying appli-
cation requirements. This can be achieved through layer
structure modifications, loss function customization, train-
ing data structure alterations, and so forth.

e Performance: Typically, neural networks are capable of
achieving state-of-the-art effectiveness.

In the following sections, we will provide a more detailed overview
of how we utilize the aforementioned advantages in the realm of
Airbnb’s two-sided marketplace.

In our implementation, the Signal Tower and Label Tower
have identical layer structures, as depicted in Figure 2. The only dif-
ference is that the signal tower averages signal listing embeddings
before a sequence of fully connected layers is applied. During the
prototyping, we didn’t see a noticeable gain when using sequence-
based layers like multi-headed self-attention instead of averaging,
and thus we left further experimentation in that direction for future
work. Each fully connected layer uses a Tanh activation function,
and the dot product of the final layers of the two towers is taken
as the distance between signal and label embeddings. During ex-
perimentation, we found that the best performance is achieved
when the towers do not share parameters. During the training,
we use the in-batch negative sampling [19] with the categorical
cross-entropy loss where negatives are sampled from within the
same batch examples. This loss function choice allows us to scale up
training to billions of training examples since the negative example
embeddings are already computed for other positive examples in
the batch.
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Figure 2: Listing Embedding Model Architecture

3.3 Negative Example Sampling

Negative example sampling plays a crucial role in model perfor-
mance and scaling, particularly in the domain of Airbnb listings.
However, we encountered several challenges that needed to be
properly addressed. In the following sections, we discuss the issue
of model overfitting on location features and the sampling bias
problem arising from the domination of popular listings in the
training data.

Typically, training data is randomly sampled, which means that
in-batch negative listings are uniformly sampled from the entire
population of listings. In the domain of Airbnb listings, we have
listings that cover the entire globe. As a result, a random negative
listing is very likely to be from another part of the world. The
model can easily overfit and rely solely on the location features to
correctly identify positive examples from all negative listings. To
overcome this, we considered the following training data sorting
orders:

¢ Random Order (random): In this approach, training exam-
ples are randomized, meaning each in-batch negative can
come from any other possible guest session. Importantly, it
is highly probable that negatives will originate from vastly
different locations, which impacts the model’s ability to learn
from non-location features.

e Location-Aware Sorting Order (geo): In this method, train-
ing examples are randomized within their respective loca-
tions (e.g., within a country or province). In this case, the

negatives are random; however, they are guaranteed to be
from the same location as a positive example. This approach
encourages the model to focus more on non-location features
and less on location-based ones.

e Mixed (mixed): This approach involves training data con-
sisting of two copies: one is randomly sorted, and the other
is geographically sorted. This method encourages the model
to learn both geographical and non-geographical features

In our experimental evaluation, we found that the best performance
is achieved with mixed training data sorting. Please refer to Sec-
tion 5 for more details.

3.4 Sampling Bias Correction

The generation of training data, as well as negative example sam-
pling, is based on guest engagement data, which is heavily skewed
towards popular listings. Consequently, the most popular listings
would dominate both positive and negative examples, and the
model’s performance would be biased towards the features of these
listings. This is a well-known problem of sampling bias [10]. We ad-
dress this problem by adjusting the importance of items according
to their probability in the population. Specifically, to correct this
bias, we employed the logQ sampling distribution correction [9]
which is also adjusted to the batch size using multinomial distribu-
tion. The formula for the correction is as follows:

Q=1-(1-w)» @)
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where w is the weight of the listing in the training data, and 2048
is the batch size. The above correction reduces the bias to popu-
lar listings and as a result improves the embeddings metrics (see
Section 5 for more details).

3.5 Distributed Learning and Caching

In this section, we discuss the challenges and solutions associated
with embedding model training on large amounts of user engage-
ment data examples.

The in-batch negative sampling unlocks the potential for scaling
up training, as the encoding of negative examples is highly efficient.
In our training, we utilized a batch size of 2048 with 512 hard nega-
tives (hard negatives are negatives with the largest logits, which are
retained when computing cross-entropy loss). To manage this vast
amount of training data, we employed several scaling techniques,
such as distributed training and embedding caching, which are
discussed below.

The model source code is implemented in the TensorFlow [8]
framework and the TensorFlow Recommender [7] library. A single
machine training of a production model takes more than a week
for one epoch using a 24 cpu, 40gb ram with A10G Nvidia GPU
machine. In order to accelerate training, we utilized the distributed
training framework Horovod [15] which allowed us to efficiently
scale the training to multiple machines. We were able to parallelize
across 16 machines (each with 24 cpu, 40gb ram and A10G GPU)
and achieve a one epoch training time under 24 hours. The total
number of epochs during model training is typically in the range
13-20.

Although the distributed training allowed us to significantly
reduce the training time, we also explored optimization techniques
that were based on the model architecture and the properties of our
data. Upon profiling the model’s performance, we identified that
the most expensive operation was the IO cost, given that a typical
training example consists of more than 10 listings (viewed/booked
listings of a guest session), each with their own features. In our
domain, most of the listing features remain largely unchanged
throughout the training timespan of one year (e.g. number of bed-
rooms, address, and so on), and the total number of training listings
is in the order of millions. Based on these observations, we imple-
mented in-model caching of static listing features, as depicted in
Figure 3.

The feature cache is pre-generated before training by analyzing
the frequencies of feature changes and saving non-changed features
for each listing. Then, the cache is loaded into GPU memory in the
form of an embedding table (Variable in Tensorflow) where each
listing has their static float and int features stored. During training,
the training example reader enriches the data with static features
from the cache whereas non-static features (such as days listed on
Airbnb) are still stored as part of the training example. Then, both
static and non-static features are plugged at the appropriate layers
on the tower architecture: for most int features we apply embedding
lookup layers whereas float features are directly concatenated to
the listing embedding layer. From the implementation standpoint,
we completely decoupled the cache lookup logic from the tower’s
structure thus easily supporting cache/non cache modes (for the
inference we don’t need to use caching).
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Figure 3: In-model feature caching

In order to have the caching in GPU we need to make sure that
cache can fit in GPU memory. In our domain, we utilized NVIDIA
A10G GPUs with 24GB memory, which was sufficient for caching
all listing static features. In the future, we plan to rely on caching
in order to ingest embedding based features such as text, image or
location embeddings. As a result of the caching optimization, we
observed a reduction of more than 50% in both training time and
computation cost without any change in the efficiency.

4 SIMILAR LISTINGS

Most applications of the listing embedding model are based on
generating most similar listing sets (also known as compsets in the
industry). This section presents our approach to generating similar
listings and the challenges we solved along the way.

After training the embedding model, we use the label tower (see
Figure 2) as a listing encoder and its last layer as a representation
of the listing embedding. Based on the training data formulation
and model architecture, we expect similar listings to be close in the
embedding space (we found that the optimal size of this vector is 32).
As a result of the inference stage, we obtain an embedding vector
for each active Airbnb listing. We use the dot distance to measure
the magnitude of two listing similarity based on their embeddings.

In most downstream applications, the goal is to find a set (typi-
cally, this is 50 or 100) of the most similar listings. Given the embed-
ding of all listings, a naive approach is to do the brute force search of
the most similar embedding vectors. That process is an expensive
process in our domain, as we need to inspect millions of candi-
dates. To accelerate this, we employed two ideas: first, we leverage
the approximate k nearest neighbors search (ANN) libraries such
FAISS [11] or ScaNN [12] and second, we reduce the pool of candi-
dates to some predefined location (e.g. we don’t need to look for
most similar listings in other countries or even cities). As a result
of the above optimization, we were able to significantly optimize
the generation of the most similar listing sets.

tower base layers
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We also support additional processing of those similar listings
sets (reranking, filtering) which are application specific. For ex-
ample, we may need more strict requirements on similar listings
distance to the target listing or the difference in the number of
rooms/capacity. All of that additional logic is implemented by down-
stream applications and could be easily tuned.

5 EVALUATION

This section presents our approach to the evaluation of embedding
models and similar listing sets.

In order to successfully use the listing embedding model in appli-
cations we need to evaluate model performance not only from its
ability to minimize training data objective function (i.e. accurately
predict label listings) but also from the quality of produced similar
listings. We define the following evaluation datasets (Table 1) which
are used across different steps of our pipeline (see Section 2 for the
overall pipeline overview):

H Eval dataset ‘ Size

Sorting order ‘ Filter H

Training 80% geo, random, | listings with N
mixed bookings
Validation 20% random listings with N
bookings
Vocabulary 100% random active
Similar List- | 100% random active
ings

Table 1: Eval datasets

We split one year of listing bookings between the training dataset
(80%) and the validation dataset (20%) where we ensure that val-
idation bookings are chronologically after training ones in order
to avoid information leakage. The training dataset has 3 versions:
randomly ordered, geographically ordered, and mixed which is a
combination of the previous two. Note, to address the cold-start
problem of missing features (like no ratings/reviews) we apply a
filter which uses only listings with at least N bookings. The vocabu-
lary dataset consists of a snapshot of all listings present in both the
training and validation datasets. We use the vocabulary dataset to
generate (inference) the embeddings of all listings and use those
embeddings for the similar listing generation. Lastly, we refer to
the Similar Listings dataset as a vocabulary set of listings, which
have the top K similar listings retrieved from the entire vocabulary
(using ANN search).

5.1 Recall

Recall-based metrics focus on measuring the effectiveness of the
embedding model in predicting label listings, and they assist in
answering the question of how well the model can learn guest
preferences from their sessions. The key metric is Recall@K, which
computes the proportion of training examples where the model was
able to correctly identify the label listing within the top K results.

During training, we measure in-batch Recall@k, which is solely
based on listings within the current batch. Given that our batch size
is 2048, this metric can be viewed as a sampled Recall@K, where
the entire population consists only of the same batch listings. After
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each epoch, we also measure the in-batch vocabulary Recallek.
The in-batch metrics are easy to compute; however, they are merely
approximations of the entire population. To compute non approx-
imated recall on all listings is computationally prohibitive and is
not very aligned to potential product uses (in most cases, we ex-
pect similar listings to be within certain pre-defined geographical
boundaries). To address those issues, we selected the top 5 locations
and computed vocabulary recalls using only respective location
vocabularies, i.e. for Los Angeles we just use Los Angeles listings
and filter out all others.

We evaluated the performance of geo, random, and mixed sorted
training data and found that the best performance is achieved with
the mixed ordering with the respective Val Recall@50 gains of
+3.77% and +14.81% over only random or geo sorted ones, respec-
tively (see Table 2). Additionally, the mixed model demonstrated
high neighborhood and capacity similarity metrics (Section 5.3).
Our main takeaway is that we need to strike a balance between
the geo and non geo features by carefully choosing the negative
examples and our mixed sorting order was able to outperform the
only random/geo based negatives.

model Val neighborhood || capacity
Recall@5@ sim sim

geo 81.80% 11.22% 43.07%

random 92.84% 61.38% 39.17%

mixed 96.61% 87.16% 45.22%

Table 2: Negative sampling experiment results

The bias correction technique (Section 3.4) was applied to the
mixed model and showed a similar Val Recall@50 of 96.68%, how-
ever, it significantly improved the top5 location Recall@50 from
8.13% to 11.56%. As a result of correcting the sampling bias, the
model was able to better generalize to long-tail listings.

5.2 Feature sensitivity and importance

In order to successfully utilize listing embeddings in applications,
it is useful to understand the feature importance as well as feature
sensitivity.

When a host updates a listing, their similar listings also need to be
updated. However, this process can be costly in both computational
(i.e., making online inferences to regenerate similar listings) and
engineering (implementing the online inference infrastructure)
aspects. Therefore, it is useful to understand which features have the
most impact on the embedding and should trigger similar listings
regeneration, and which features have a minor impact and could
lead to a similar listings set update at a later stage. To this end,
we performed a sensitivity analysis where we randomly perturbed
features and measured the impact on their embeddings. As a result,
we were able to estimate which features are most likely to alter
listing embeddings and their respective similar listings. Although
the feature sensitivity is conditioned by listings itself, we found
that those amenities are typically the most impactful ones (Table 3):
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H Rank ‘ Amenity H
1 Pool
2 Free parking
3 Jacuzzi
4 Wireless Internet
5 Allows Pets

Table 3: Most impactful amenities

These sets of high sensitivity amenities (and other features)
are then used by the product to decide on similar listings refresh
schedules.

In the current model, we use more than 100 listing features, and
we aim to understand the importance of these features. Finding
feature importance in complex neural network architectures is
not straightforward, and we explored different approaches for this.
Specifically, we used normalized mutual information between signal
and label feature value distributions to measure feature importance
([4])- This approach allows us to compare different types of features
(e.g., dense vs. categorical) uniformly. However, it does not take
feature interactions into account.

Another approach is based on the idea of eliminating a feature
signal by permuting its values during the inference process (re-
ferred to as permutation feature importance [4]). This approach
leverages the labeled data and provides a clear, well-defined method
for measuring feature importance. However, it does not consider
feature dependencies. The above two approaches identified most
location features as the most important, as well as certain amenities
like AC, Heating, and Smoke Detector.

5.3 Similar listings metrics

Finally, most applications are based on a set of similar listings
that are shown for a given target listing. Therefore, it is important
to evaluate the properties of similar listings and ensure they meet
product expectations. For example, hosts would expect their listings
to be in the proximity of their own listing (e.g., within a certain
radius) and their capacities (number of bedrooms) to be relatively
close (e.g., +-1). To address this, we also measure the properties of
similar listing sets with respect to their target listings:

¢ Geographical similarity (neighborhood sim): Average
distance between the target listing and its similar ones or
the proportion of listings that are from the same zipcode,
city, and so on.

o Listing similarity (capacity sim): How close the number
of bedrooms, beds, capacity of target listings and its similar
ones. How far is the median price of similar listings to the
price of the target one?

In our evaluation, we found that improvements in RecalleK gen-
erally translate to improvements in the similarity metrics (Table 2).
However, we discovered that there is an inherent limit when further
reduction of recall leads to an increase in some similarity metrics.

6 APPLICATIONS

This section presents the existing and future product applications
of the similar listings model.
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6.1 Host Calendar

Airbnb hosts manage their listings by posting their properties on
Airbnb, adjusting their calendar for availability, and fine-tuning
their prices and settings. The Host Calendar is a tool that enables
them to perform most of these tasks on their availability calendar
(see Figure 4).

Setting an appropriate price is a challenging task [18] for hosts.
Assisting hosts in comparing their price with the average prices
of similar listings has proven to be beneficial and has become a
part of the Host Calendar product [6]. This product is based on
the model discussed in this paper, and it utilizes the properties of
similar listings discussed in Section 5. On one hand, we aim to
display the most similar listings according to guest preferences. On
the other hand, we also strive to ensure that these listings meet the
host’s key expectations such as geographical proximity and price
categories. By tuning our model and post-processing logic, we aim
to find the optimal balance between these two aspects. As a result
of the rollout of this model to production, we observed positive
feedback from hosts who found the similar listings feature helpful
in setting their prices.

Another related application of similar listings used by Airbnb
hosts is the List-Your-Space screen, where new hosts set their price
for the first time. In this scenario, we continue to use our production
model. However, we impute any missing features (a new listing may
not have all information filled out yet) based on our understanding
of the location and nearest listings.

6.2 Similar Listings for Guests

The previous section discussed existing product interfaces where
hosts utilize similar listings. In this section, we will explore potential
applications of similar listings for guests.

When guests are in search of a place to stay, a collection of simi-
lar listings can be shown along with the listing they are currently
viewing. The existing model is based on the listing-to-listing two-
tower architecture, which doesn’t take into account guest-specific
features such as their origin or past bookings. Therefore, the pre-
sented similar listings will not be personalized and will solely focus
on the listing similarity perceived by all Airbnb guests. A possible
extension could involve switching to a guest-listing two-tower ar-
chitecture. In this case, the similar listing recommendation could
be personalized for guests.
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There are situations when hosts need to change their plans and
cancel their existing reservations. In these instances, guests need
to find a substitute listing that is comparable to the canceled one.
The existing embedding model (or its extension to a guest/listing
architecture) might be applicable as well.

7 CONCLUSION

This paper presents a study on the application and learning of
listing embeddings in Airbnb’s two-sided marketplace. We present
our approach to building a system that learns listing embeddings
based on guest engagement data and supports the generation of
similar listing sets. We delve deeper into the technical challenges
we faced during training and discuss our solutions and lessons
learned from evaluating the model at all stages. Finally, we discuss
the existing and future products in which listing embedding models
and similar listing sets are used at Airbnb.
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