
Can Language Models Accelerate Prototyping for Non-Language
Data? Classification & Summarization of Activity Logs as Text

José González-Brenes
jose.gonzalezbrenes@airbnb.com

Airbnb
San Francisco, California, USA

ABSTRACT
We report our efforts in developing machine learning models in-
tended to boost the efficiency of operations agents in two-sided mar-
ketplaces. These agents are crucial for customer service and quality
control, often working with detailed data like activity logs—which
are detailed record of user interactions within the marketplace.

We propose transforming structured data (activity logs) into a
more manageable text format and then leveraging modern language
processing toolkits. These toolkits rely on powerful Large Language
Models (LLMs). When these toolkits are used for modeling text,
they typically are sophisticated enough to reduce the time machine
learning experts spend in feature engineering or designing a custom
network architecture.

We demonstrate our approach by summarizing and classifying
activity logs. Although the motivation for our work is accelerating
the machine learning lifecycle by reducing feature and neural net-
work engineering; our preliminary results suggest that our frame-
work may outperform by 80% the average precision of a similar
model that was designed relying heavily on feature engineering.
Because our approach relies less on time-consuming tasks for ma-
chine learning experts, we believe that it is a promising avenue for
further research.

CCS CONCEPTS
• Computing methodologies → Information extraction; Neu-
ral networks; • Information systems → Content analysis and fea-
ture selection.

KEYWORDS
activity log processing, structured data summarization, prototyping

ACM Reference Format:
José González-Brenes. 2024. Can Language Models Accelerate Prototyping
for Non-Language Data? Classification & Summarization of Activity Logs
as Text. In Proceedings of TSMO 2024 Workshop on Two-sided Marketplace
Optimization: Search, Pricing, Matching & Growth in conjunction with KDD
Conference (KDD 2024) (KDD-TSMO ’24). ACM, New York, NY, USA, 7 pages.
https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD-TSMO ’24, August 25, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In this paper, we report our results of experimenting with a rapid
prototyping technique for machine learningmodels that input struc-
tured data. Structured data consists of blocks of data organized by
predefined structures to compress recurring information [13]. Our
focus is on activity logs, a common data source for two-sided mar-
ketplaces. Activity logs record user interactions with the market-
place, including session and device info, along with activities like
searching or transactions. Activity logs are considered structured
data because a single instance contains both (i) multiple rows (for
each session or activity), and (ii) multiple columns with rich types
(numeric, string, list). No personally identifiable information was
read or processed in the analysis presented here.

Two-sided marketplaces often create operation cases for users
who meet certain criteria. In this work, we focus on operation cases
that include activity logs. These logs are sent to, and acted upon
by, employees often referred to as operations agents. In Figure 1,
we depict an example of this workflow, which is the focal point of
this study. We do not describe the specifics of the processes that
require operation agents to use activity logs. Instead, we provide
a high level description of examples of how they are used. The
operations agents receive activity logs that may consist of many
rows and columns. Each row in the activity log represents a user
session. These sessions aren’t necessarily continuous; a user can
log in on a device one day and continue using that same login in
future interactions. Each column in the activity log represents an
attribute of the session. In Table 2 we give a high-level view of the
columns in the activity logs; these include the “activities” of the
session, which describe events in the user journey, such as sign-up
and login. Figure 1 shows that the agents are required to identify
the rows (i.e., sessions) of the activity log as per business guidelines.

In Example 1 of Figure 1, we see that if one or more rows are
selected, the case is marked for follow-up by another business pro-
cess. The details of this business process are not described here.
In Example 2, we see that if no rows are selected, the workflow
is complete. This workflow can be highly costly due to its scale
and the extensive information contained in the activity logs. There-
fore, developing Artificial Intelligence (AI) tools to enhance agent
decision-making efficiency could be beneficial. These AI tools are
under active research, and it’s not possible to determine a priori
if they will indeed enhance the speed and quality of operations
agents’ work. Our motivation is to create tools that assist oper-
ation agents, not to replace them. Given that optimizing human
workflows is an experimental iterative process, investing excessive
time in feature engineering or bespoke neural network design may
prove impractical and inefficient at the early stages of a project.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

KDD-TSMO ’24, August 25, 2024, Barcelona, Spain González-Brenes

1

2

...

I1

1

2

...

I1

1

2

...

I2

1

2

...

I2

Follow-up

E
xa

m
pl

e
1

E
xa

m
pl

e
2

Don't follow up

The Operations Agent receives an
activity log that may have many rows

The Operations Agent mark zero,
one or more rows according to
business rules

Activity logs need to be
followed-up if sessions
were selected by the
Operations Agent

1 2 3

 1 2 3 4 ... J

 1 2 3 4 ... J

 1 2 3 4 ... J

 1 2 3 4 ... J

Figure 1: Two sample cases in a real-life workflow. Agent see an activity log where each row is session, and columns represent a
type of information (such as timestamp, or list of activities). Operations agents are required to investigate activity logs and
select certain rows based on specific business criteria. If they select any non-zero number of rows, then an additional business
process needs to be followed.

In recent years, we’ve seen significant advancements in the de-
veloping of tools that enable rapid prototyping of machine learning
applications. For instance, sklearn [3] is a popular library that
includes many machine learning algorithms. With the rising in-
terest in Generative AI, other toolkits like hf-transformers [16]
have been proposed for natural language processing. Unfortunately,
leveraging these toolkits to activity logs data is not straightforward.
In general, structured data like activity logs require that a machine
learning specialist designs bespoke feature engineering strategies,
neural network architectures, or both.

In this paper, we present our findings on a straightforward but
surprisingly effective method of leveraging existing popular nat-
ural language toolkits to structured data. The motivation for our
work is to develop machine learning tools to support and improve
the efficiency of operations agents. We believe that the techniques
described here could be used to accelerate the machine learning
lifecycle by reducing feature and neural network engineering. Even
though our focus is on faster prototyping, our results suggest that
our approach can potentially outperform more traditional methods
that rely heavily on feature engineering. We demonstrate our ap-
proach with two use cases to aid operations agents in dealing with
activity log data:

• Activity log summarization: involves the extraction of rows
(which represent user sessions) from the activity log. The
main objective is to assist in flagging the rows that agents
may need to inspect. This corresponds to step 2 in Figure 1.

• Activity log classification: these are models that can flag
activity logs that need follow-ups. This corresponds to step 3
in Figure 1.

The rest of this paper is organized as follows. § 2 describes our
approach of prototyping activity log models using existing LLM
architectures. § 3 describes the two-sided marketplace data used for
our experiments. § 4 provides empirical evaluation. § 5 relates our
work with prior literature. Finally, § 6 provides concluding remarks.

2 METHODS
Our method involves converting each activity log into a text for-
mat (§ 2.1). This step is crucial to our methodology as it modifies the
structured data in such a way that it can be processed by LLM archi-
tectures. Because of this, we pre-train an activity log model (§ 2.2)
— we use an encoder architecture known as BERT [6]. BERT was
proposed for natural languages and it isn’t designed designed to
handle structured data or additional features. Herein lies our contri-
bution: a method to map structured data as text, enabling the use of
powerful LLM architectures such as BERT to work with structured
data sources like activity logs. The choice of BERT is motivated
by its pioneering use of the transformer architecture [15], which
allows for enhanced understanding of textual data. Although it’s
a powerful model, it’s also relatively quick to train, offering a bal-
ance between performance and computational efficiency. Future
research could experiment with larger, more complex architectures.
One of BERT’s standout features is its use of deep bidirectional rep-
resentations from unlabeled text. It does this by considering both
the left and right context in all layers of the model, which helps it
gain a comprehensive understanding of the text. After pre-training
our model with BERT, we proceed to fine-tune it for specific tasks.
These tasks include classification (§ 2.3) and summarization (§ 2.4),
which address our objective to improve the efficiency of operations
agents handling activity log data.

Classification & Summarization of Activity Logs as Text KDD-TSMO ’24, August 25, 2024, Barcelona, Spain

2.1 Textual representation of structured data

Algorithm 1 Algorithm that represents the structured data of an
activity log as text

1: procedureActivityLogToText(X: Activity Log,𝑚: metadata)
2: Initialize empty string output
3: Add metadata𝑚 to output
4: Add new_line token to output
5: for each row i in X do
6: for each column j in r do
7: Add special token to represent column 𝑗 to output
8: Add f(𝑥𝑖, 𝑗) to output
9: Add space_token to output
10: Add new_line token to output
11: return output
12: procedure f(x)
13: ⊲ Formating function 𝑓 converts an entry of the Activity

Log to text ⊳

14: if type(𝑥)=string then
15: return 𝑥

16: else if type(𝑥)=list then
17: Initialize empty string list_output
18: Sort(𝑥)
19: Add "[" to list_output
20: for each element e in 𝑥 do
21: Add f(e) to list_output
22: Add space_token to list_output
23: Remove last space from list_output
24: Add "]" to list_output
25: return list_output
26: else if type(𝑥)=integer or type(𝑥)=boolean then
27: return to_string(x)

Algorithm 1 shows how we convert structured data from ac-
tivity logs into text; we illustrate the process in Figure 2 with an
example. This algorithm allows us to leverage powerful language
model architectures, such as BERT, for structured data analysis. It
begins by initializing a string, output to include metadata about the
activity log. This metadata is treated as a string, and we will see
some examples when we describe our data (§ 3). We iterate through
each row in the activity log 𝑥 : for each column 𝑗 , it inserts a special
token that signifies the name of the column that we are currently
processing (line 1). We then add the outputs of a formatting func-
tion to the output string, followed by a space. Once we processed all
columns in a row, we add a new line character to the output string,
symbolizing the end of a row. The formatting function 𝑓 converts
different types of entries in the activity log into text. For example,
if an entry 𝑥 is a string, the function simply returns 𝑥 . If 𝑥 is a
list, we sort it on alphabetical order or on its content’s popularity
in the training set— meaning that the most frequently occurring
item in the list would appear first. This sorting approach allows
us to significantly reduce the complexity of the input space. For
example, suppose there are 100 different element types that could
populate the list, and a session consists of 3 elements. Without
sorting, the model would have to learn from a space of roughly a

1

I

 1 2 3 4 ... J

c1 f(x1,1) *c2* f(x1,2) ... *cJ* f(x1,J)

 x1,1 x1,2 x1,3 x1,4 ... x1,J

 xI,1 xI,2 xI,3 xI,4 ... xI,J

...

c1 f(xI,1) *c2* f(xI,2) ... *cJ* f(xI,J)
...

metadata

...
metadata

activity log

Figure 2: Example of parsing an activity log as text

million
(
𝑃 (100, 3) = 100!

(100−3)!
)
possible token permutations. How-

ever, by sorting the activities, the input space is reduced to just
a couple hundred thousands

(
𝐶 (100, 3) = 100!

3!(100−3)!
)
token com-

binations, resulting in a substantial reduction of complexity. Our
hypothesis is that this reduction enables the model to learn more
efficiently during pre-training, but due to time constraints, we did
not validate this empirically. This textual representation enables us
to use powerful language model architectures for structured data.
We believe that the simplicity and efficiency of this method makes
it a valuable tool for prototyping and data analysis in two-sided
marketplaces.

The idea of representing numeric values as strings and process-
ing them using a LLM may seem odd at first, but it is quite reason-
able in the context of a modern tokenizers. For example, consider a
Wordpiece tokenizer [14] that breaks down words into subwords or
“wordpieces”. A Wordpiece tokenizer allows handling of rare and
unseen tokens. For example, the number “21” could be learned to
be tokenized as a single entity if it’s common in the training data,
or with two tokens (up to one per character) if it is uncommon. In a
very high-level view, this is not unlike how humans read out certain
two-digit numbers with two words (twenty - one) and others with
one (twenty). Our numeric representation allows the model to un-
derstand some semblance of scale of some values, and aligns with
the common practice of discretizing numbers. For example, one-hot
encoding is a type of discretization, that transforms each integer
number seen in the training set into a new binary feature (e.g., is
value equals 2? is it equals 3?, etc), allowing models to capture
non-linear relationships between numbers. We argue that treating
numbers as tokens effectively discretizes continuous variables. One
advantage of our approach is that it handles numeric features in
activity logs, even when the quantity of numeric features changes
from one log to the next. Traditionally, handling such variability
in numerical data requires manual feature engineering—a process
where human experts devise methods to aggregate or transform
these numbers (averaging, summing, etc.), or designing a neural
network architecture that is able to handle this variability. Our
method however does not require this manual feature engineering,

KDD-TSMO ’24, August 25, 2024, Barcelona, Spain González-Brenes

and we rely on existing neural architectures designed for text. One
limitation, however, is that our numeric representation is not exact.
Additionally, even larger language models like GPT4 struggle to
consistently enumerate numbers. Once we have the activity log
represented as text, it is straightforward to use toolkits such as
hf-transformers for pre-training and fine-tuning.

2.2 Pre-training of Activity Log Embedding
Model

After converting the activity logs to text, we pre-train an Activity
Log Embedding Model from scratch. As mentioned earlier in the
paper, it is not reasonable to use existing BERT parameters because
those are usually pre-trained on English or other natural language
data that does not resemble Activity Logs. The main goal of this
step is to use self-supervised learning to capture the structure and
meaning in activity logs. For this, we use a WordPiece tokenizer.
Given the unique nature of our work, we specify that the tokenizer
should only break text at space and newline characters—since Al-
gorithm 1 defines whitespaces as special characters to map the
structured information of the activity logs. We learn the tokenizer
word pieces using the Activity Logs in the training set after being
processed as text.

Next, we use a Masked Language Model (MLM) method for pre-
training. MLM is a method used in BERT that randomizes some
parts of the input tokens and predicts them from their context.
This forces the model to find meaningful connections between
different fields in the activity logs. Because BERT is limited to texts
of 512 tokens or smaller, we simply discard additional tokens that
do not fit in the context window; however, more sophisticated
strategies [19] exist. We leave for future work to investigate the
impact of truncation on activity log model. For our experiments,
we use the entire training set to learn the tokenizer, and pre-train.

2.3 Fine tuning of Activity Logs for
Classification

We fine-tune our pre-trained model to predict whether a given
activity log requires follow-up action or not (step 3 in Figure 1).
We operationalize this as a binary sequence classification problem.
In this context, our goal is to map the sequence of input token
(the transformed text-form of the activity logs) to a binary target
variable, indicating the candidate label that the activity log requires
follow-up action. This classification model doesn’t identify the spe-
cific rows within the log that require follow-up. Instead, it provides
an assessment, indicating whether any session within the given log
requires further attention.

2.4 Fine tuning of Activity Logs for
Summarization

For summarizing activity logs, we aim to identify the rows of the
activity log that agents may need to flag. We framed this as an
extractive summarization problem—and is a more granular form of
analysis than the classification task. We formulate this solution as
a token classification approach. To prepare the data for this task,
we use a BIO tagging scheme [10]: each token in the (textualized)
activity log is assigned a ‘B’, ‘I’, or ‘O’ tag, indicating if it’s

Training Dev Test

of cases 1.4M 73K 1M
of rows 9M 472K 722K
% of cases flagged for follow-up 10% 10% 7%
Date range 1/2023-2/2024 3/2024

Table 1: Summary statistics of dataset

at the beginning of a flagged session, inside a flagged session, or
outside any flagged session, respectively. We operationalize this, by
assigning a ‘B’ to the first token of a flagged session, and marking
‘I’ to the rest of the tokens of the session (until a new line is found).

During model training, we optimize a multi-class cross-entropy
loss function, which measures the discrepancy between the model
predictions and the actual BIO tags. Since this approach requires
storing information for each token from the activity log, it is more
memory-intensive. To mitigate this, we speed up the training by
selectively training only on activity log where a follow-up is re-
quired. This is possible because the negative examples will come
up from tokens of rows that were not flagged. Thus, the training
does not see activity logs with none of the rows unflagged.

3 DATASET
The data we use in this study comes from a prominent two-sided
marketplace, and has been anonymized to exclude any personally
identifiable information. Our focus is on data generated from a
workflow identical to the process depicted in Figure 1. We partition
our dataset into training, development, and test subsets. The train-
ing set is utilized for model fitting, while the development set aids
in hyper-parameter tuning and model selection across epochs. All
the results reported in this paper are derived from the test set. To
prevent our model from overfitting to seasonal trends in the data,
we adopt a time-based split for the test set. While evaluating on
new cases of users already reviewed in the training split could be a
valid concern, our primary focus is to evaluate on how the system
will be used. This approach, contrasting with a random split, takes
into account temporal information: data from earlier periods are
used for training, while data from later periods are used for test-
ing. Table 1 provides a statistical overview of our data splits. This
partitioning ensures that our models are well-trained, tuned, and
tested, ensuring robust and reliable performance when deployed in
real-world scenarios.

Table 2 outlines the columns present in our activity logs. They
include the number of activities per session and the duration of each
session, both numeric values. Additionally, they include whether a
row was previously selected (boolean), the list of activities within
the sessions (list of strings), and certain client features (list of
strings). Metadata, represented as a string in two tokens, explains
why an agent is reviewing a particular session.

4 EMPIRICAL EVALUATION
We use a precision-recall curve to visualize the performance of our
method and compare it against baselines. Precision-recall curve is
particularly useful when classes are imbalanced, as it shows the
trade-off between precision (how many of the predicted positives

Classification & Summarization of Activity Logs as Text KDD-TSMO ’24, August 25, 2024, Barcelona, Spain

Session features

How many activities are in each session? numeric
How many days do each session span? numeric
Was a row selected previously by an agent? boolean
Activities in the sessions list of strings
3 Client features list of strings

Metadata

Reason code of why agent is reviewing string (two tokens)
Table 2: Activity log columns

0.00 0.25 0.50 0.75 1.00
Recall (Positive label: 1)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 (P
os

iti
ve

 la
be

l:
1)

AL as text: BERT classifier (AP = 0.43)
AL as text: Bigram forest classifier (AP = 0.24)
Manual Featuring Engineering: Forest classifier (AP = 0.23)
Chance level (AP = 0.05)

Figure 3

are actually positive) and recall (how many of the actual positives
were predicted correctly). The average precision, another metric
we report, provides a single-figure summary of the precision-recall
curve. It calculates the average of precision values at all recall levels,
offering an overall measure of classifier performance.

4.1 Activity Log Classification
Figure 3 compares three different approaches:

These results highlight the potential of employing existing Large
Language Model architectures, like BERT, for processing and classi-
fying complex structured data effectively and efficiently. Comparing
these results, it’s clear that the BERT classifier significantly outper-
forms the other two approaches. While the bigram random forest
and manual feature engineering method have similar performances,
they both fall short when compared to the advanced processing
and classification capabilities of BERT.

• The BERT classifier we built using the text representation
produced by applying Algorithm 1 to activity logs, achieved
an average precision of 0.43. This is a 79% improvement over
the second best baseline.

• We compare it against a bigram random forest using the
same transformation of Algorithm 1. In preliminary experi-
ments we found no difference between bigram and trigram
models—both outperformed unigrams. For this experiment,
we did not leverage aWordpiece tokenizer, and instead aggre-
gated tokens using TFIDF. This baseline yielded an average
precision of 0.24. Since this inputs the same textual represen-
tation than the BERT model, we can attribute the advantage
to BERT’s more complex architecture. Although we didn’t
spend significant effort doing feature engineering or net-
work design, this experiment suggests that our approach can
still reap some of the benefits of more modern approaches
for neural networks. Additionally, it seems that the textual
representation of the activity logs cannot be leveraged using
tree-based approaches without additional feature engineer-
ing.

• The final method is a baseline approach that relies on man-
ual feature engineering. We use the output of a real pro-
duction system that was designed for a very similar—though
not identical task:
– The labels used during training are related to our case
case, but not completely identical.

– The training data is slightly different.
– Other small differences.
The motivation behind employing this system is its validated
efficacy as a model. It’s not trivial to design an experiment
to benchmark against manual feature engineering—as this
process depends on how much time is invested, and the
skills of the machine learning engineer (which is not easily
quantifiable). Future work could allow different machine
learning experts to build features and control by amount of
time spent. However, because of time constraints we did not
explore this route. The average precision of this baseline was
only 0.23. Although it is possible that an expert can design
features that outperform the BERT model, we think that
this comparison can shine light on the difficulty of manual
feature engineering, and gives us a ballpark estimate of the
relative performance of our approach.

4.2 Activity Log Summarization
Figure 4 illustrates the results of comparing the results of a BERT
model against a binary random forest:

• Our BERT summarizer model was trained to generate BIO
tags for each token within the activity log—in other words,
the model predicts a tag (‘B’, ‘I’, or ‘O’) for each token
in the textualized activity log. However, in the context of
our task, we are interested in the model’s ability to classify
entire rows rather than individual tokens. To bridge this gap
between token-level prediction and row-level classification,
we employed a majority rule approach: if a row had more‘B’
or ‘I’ tags than ‘O’ tags, we considered the row as selected.
This strategy empowered the BERT summarizer model to
achieve an average precision of 0.23, demonstrating its capac-
ity to effectively identify pertinent rows within the detailed
structure of activity logs.

KDD-TSMO ’24, August 25, 2024, Barcelona, Spain González-Brenes

0.0 0.2 0.4 0.6 0.8 1.0
Recall (Positive label: 1)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 (P
os

iti
ve

 la
be

l:
1)

BERT classifier * BERT summarizer (AP = 0.24)
BERT summarizer (AP = 0.23)
Forest classifier * Forest summarizer (AP = 0.16)
Forest summarizer (AP = 0.12)
Chance level (AP = 0.00)

Figure 4

• Because the summarizer model was only trained on cases
that were flagged for review, it didn’t see negative examples.
So, to improve the performance, we multiplied the probabil-
ity of the summarizer by the probability that the case needs
follow-up. This modification led to a better average precision
of 0.24.

• We also implemented a forest summarizer that uses bi-
grams and evaluates each row individually, without consid-
ering the context of other rows in the case. This is effectively
a binary classifier, trained exclusively on cases that required
follow-up, and achieved an average precision of 0.12.

• Finally, multiplying the output of the forest summarizer and
the random forest achieves an average precision of 0.16.

The results suggest that the BERT model is more effective in
identifying the specific rows that require follow-up compared to
a binary random forest. This highlights the potential of using pre-
trained language models like BERT for handling complex structured
data and making precise predictions at a granular level.

5 RELATEDWORK
Our work relates to AutoML [8] techniques, which are a family
of algorithms designed to reduce the development time for data
preparation, feature engineering, model generation, and model
evaluation. Although very promising, these techniques are not yet
mature and are not truly automatic but for a few applications [9].
Moreover, it is unclear howwell they work for activity log data. Our
work focuses on activity log data—which is a crucial data source
for two-sided market places.

Our work relates to efforts of extending Large Language Models
(LLMs) to structured and tabular data. Expansions of LLMs can be
categorized into two research lines. The first line includes mod-
els that aim to link textual and structural information from tables
for better context-aware representations [14, 18]. These LLMs are
usually evaluated in downstream tasks related to keyword and
content-based table retrieval, and table similarity. These differ from
our work because we do not deal with natural language text—we
are only interested in facilitating the processing of activity logs.
Moreover, it is unclear how these methods would generalize for
classification and summarization. The second family aims to cap-
ture the relationship between columns and rows [4, 5], or to embed
different data types within structured data [1, 17]. These models
are evaluated on downstream tasks such as column type annota-
tion, column property annotation, table type detection and table
similarity prediction. In relation to our focus on classification and
summarization, it is unclear if these approaches would be help-
ful for summarization. The table type detection task is potentially
related to our classification goal, but unfortunately the published
results [4] do not compare with traditional methods nor provide
enough details to understand the extend on which their technique
could be relevant. We leave for future work to explore these promis-
ing techniques and run evaluations against our methods.

Alternatively, conventionally pre-trained LLMs have been used
to understand structured data [13] with mixed results depending
on on table input format, content order, role prompting, and parti-
tion markers. Relatedly, growing empirical evidence suggest that
deep neural networks struggle when the input space is a simple
vector [12].

6 CONCLUSION
This paper presents an innovative approach to be able to use natu-
ral language processing toolkits for structured data analysis. Our
method of transforming structured data into text format enables us
to leverage powerful language model architectures such as BERT.
We demonstrate our method’s effectiveness through a case study
of a two-sided marketplace, where we build models that may be
helpful for operations agents in processing and analyzing activity
log data.

Trainingmachine learningmodels is a time and resource-intensive
process. In the case of our experiments, the training time spanned
about 4 days for pre-training, 4 days for fine-tuning the case clas-
sifier, and almost an entire week for the fine-tuning the summa-
rization model using a single Nvidia Tesla T4 GPU. We set the
batch sizes as large as the GPU memory allowed. This can be con-
trasted with the training time for the random forest, which can
often be completed within just hours using CPU parallelism. The
extended training time for BERT models can also result in addi-
tional costs, particularly when considering the need for stronger
computational resources, such as GPUs. Another potential limita-
tion in our approach, is that it relies on neural networks that in
general are regarded as difficult to interpret. While inference in
BERT is deterministic, it is challenging to determine beforehand
whether a slight alteration in the input would result in a significant
change to the model’s output.

Classification & Summarization of Activity Logs as Text KDD-TSMO ’24, August 25, 2024, Barcelona, Spain

Despite their shortcomings, the use of BERT models can poten-
tially lead to significant savings in terms of human labor. Traditional
manual feature engineering approaches require extensive human
involvement in the iterative process of designing, implementing,
and testing features. Our results indicate that using a BERT model
can outperform manual feature engineering in terms of average
precision. However, it is essential to note that these results are
initial findings and more extensive experimentation is necessary.
Limitations of our work include that we only compared to a single
existing manually engineered model that was not designed for iden-
tical goals than ours—it may be more compelling to compare against
a large number of machine learning engineers, perhaps using a plat-
form such as Kaggle [2]. Additionally, future work can look at other
alternatives to BERT that may be simpler (eg. LSTM [7]) or more
complex (eg., Megatron [11]).

The effectiveness of our approach versus more traditional ma-
chine learning methods can vary depending on the specific charac-
teristics of the problem and the data; as well as the time and skill
of the machine learning engineer. As such, while our results are
promising, they should be seen as a motivation for further explo-
ration rather than a definitive conclusion. The potential for cost
and labor efficiency combined with the high performance of the
LLM models to structured data makes it a compelling avenue for
future research.

REFERENCES
[1] Luis Armona, José P González-Brenes, and Ralph Edezhath. 2019. Beyond Word

Embeddings: Dense Representations for Multi-Modal Data. In The Thirty-Second
International FLAIRS Conference.

[2] Casper Solheim Bojer and Jens Peder Meldgaard. 2021. Kaggle forecasting compe-
titions: An overlooked learning opportunity. International Journal of Forecasting
37, 2 (2021), 587–603.

[3] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, et al. 2013. API design for machine learning software: experiences
from the scikit-learn project. arXiv preprint arXiv:1309.0238 (2013).

[4] Pei Chen, Soumajyoti Sarkar, Leonard Lausen, Balasubramaniam Srinivasan,
Sheng Zha, Ruihong Huang, and George Karypis. 2024. HYTREL: Hypergraph-
enhanced tabular data representation learning. Advances in Neural Information
Processing Systems 36 (2024).

[5] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. Turl: Table
understanding through representation learning. ACM SIGMOD Record 51, 1
(2022), 33–40.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[7] Alex Graves andAlex Graves. 2012. Long short-termmemory. Supervised sequence
labelling with recurrent neural networks (2012), 37–45.

[8] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2019. AutoML: A Survey of the State-
of-the-Art. CoRR abs/1908.00709 (2019). arXiv:1908.00709 http://arxiv.org/abs/
1908.00709

[9] Shubhra Kanti Karmaker, Md Mahadi Hassan, Micah J Smith, Lei Xu, Chengxiang
Zhai, and Kalyan Veeramachaneni. 2021. Automl to date and beyond: Challenges
and opportunities. ACM Computing Surveys (CSUR) 54, 8 (2021), 1–36.

[10] Lance Ramshaw and Mitch Marcus. 1995. Text Chunking using Transformation-
Based Learning. In Third Workshop on Very Large Corpora. https://aclanthology.
org/W95-0107

[11] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[12] Ravid Shwartz-Ziv and Amitai Armon. 2022. Tabular data: Deep learning is not
all you need. Information Fusion 81 (2022), 84–90.

[13] Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. 2024.
Table meets llm: Can large language models understand structured table data?
a benchmark and empirical study. In Proceedings of the 17th ACM International
Conference on Web Search and Data Mining. 645–654.

[14] Mohamed Trabelsi, Zhiyu Chen, Shuo Zhang, Brian D Davison, and Jeff Heflin.
2022. StruBERT: structure-aware BERT for table search and matching. In Pro-
ceedings of the ACM Web Conference 2022. 442–451.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[16] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2020. Transformers: State-of-the-art natural language processing. In Proceedings
of the 2020 conference on empirical methods in natural language processing: system
demonstrations. 38–45.

[17] Ledell Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, and Jason
Weston. 2018. Starspace: Embed all the things!. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 32.

[18] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for joint understanding of textual and tabular data. arXiv
preprint arXiv:2005.08314 (2020).

[19] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
et al. 2020. Big bird: Transformers for longer sequences. Advances in neural
information processing systems 33 (2020), 17283–17297.

Received 18 May 2024; revised 15 July 2024; accepted 1 July 2024

https://arxiv.org/abs/1908.00709
http://arxiv.org/abs/1908.00709
http://arxiv.org/abs/1908.00709
https://aclanthology.org/W95-0107
https://aclanthology.org/W95-0107

	Abstract
	1 Introduction
	2 Methods
	2.1 Textual representation of structured data
	2.2 Pre-training of Activity Log Embedding Model
	2.3 Fine tuning of Activity Logs for Classification
	2.4 Fine tuning of Activity Logs for Summarization

	3 Dataset
	4 Empirical Evaluation
	4.1 Activity Log Classification
	4.2 Activity Log Summarization

	5 Related Work
	6 Conclusion
	References

