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ABSTRACT
Airbnb offers guests the opportunity to book unique as well as more

traditional accommodations. Guests primarily explore the available

inventory for their trip by executing searches and leveraging a

variety of filters to express their preferences. Sometimes a guest

will encounter very few results returned for their search which

can lead to a poor user experience and eventual abandonment of

the platform without booking. From a user experience and busi-

ness perspective, it is therefore valuable to identify such search

queries that yield insufficient inventory and lead to missed conver-

sion opportunities. The longevity and complexity of user search

sessions on Airbnb, however, pose an additional challenge to this

problem. A user’s intent and persistence confounds with our ability

to understand the connection between the number of search results

returned, and a user’s ultimate booking outcome. We overcome

this hurdle by employing a causal inference approach paired with

predictive modeling. In this paper, we present a causal framework

and methodology to identify searches where an insufficient number

of results returned is preventing booking conversion. Our ability to

identify these searches has applications across analytical insights,

experiment analyses, real-time product interventions and supply

management. We demonstrate the efficacy of our approach via

simulated data experiments and real user search queries.
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1 INTRODUCTION
Airbnb is a two-sided rental marketplace where guests can book

both traditional and unique accommodations. A guest looking for

accommodation generally starts with a search query, likely spec-

ifying a location, dates, and guest count. As a guest explores the

available accommodation listings they may refine their search, ap-

plying filters to express specific preferences, such as price maximum

or access to a pool. Once a guest finds a listing that they like, they

can checkout and book it.

As guests refine their search, theymay encounter very few search

results. This may be because they have applied a lot of filters to

their search, or there are very few remaining listings for their dates.

States of low inventory can be a frustrating experience for the

searcher, and can ultimately lead to the searcher abandoning the

platform without making a booking. Therefore, an important part

of building a great search experience for our guests is identifying

when a searcher is facing an insufficient amount of inventory, which

is causing a bad user experience and a missed booking opportunity.

The literature on low search results [7, 8], generally focus on

methodologies for rewriting such queries. However, we were un-

able to find any studies addressing the determination of whether

the number of results is “too low”. Queries returning null search

results are generally used as the candidates for rewriting. A singular

static threshold can also be used (e.g. 20 results), but this approach

has limitations at Airbnb due to the diverse nature of our guests’

searches.

For instance, a last minute search for accommodations in a popu-

lar coastal city may yield 30 results during the peak season (without

any filtering). On the other hand, a search for lodging in a specific

neighborhood with a strict price preference may yield 10 results.

The 30 results returned for the first broad unfiltered search query is

likely insufficient and may prevent the guest from booking, while

the 10 results returned for the precise search are typical given the

specificity of the search and sufficient to result in a booking.

This paper presents a novel methodology to identify searches

where there is an insufficient number of results returned, preventing

booking conversion. We use a causal inference approach, as well as

predictive modeling to tackle the problem. In summary, the paper

makes the following contributions:

(1) Presenting a system describing the causal relationship be-

tween booking conversion and number of search results,

(2) An approach to estimate the true effect of number of search

results in the presence of latent variables,

(3) An application of combining predictive modeling and causal

inference to understand user outcomes in search.

2 PROBLEM DEFINITION
Weare interested in identifying search queries forwhich the amount

of inventory returned is preventing booking conversion. We call

such queries, a "Low Inventory State" (LIS).

Another way to define such state is a search for which an addi-

tional result would bring a significant increase to the likelihood of

booking conversion for the guest. This definition implies a binary

outcome: a search is either a "LIS" or not, but this is only for practi-

cal purposes and simplicity of use for consumer of such a metric.

Later on, we will briefly discuss how we establish a threshold to

satisfy a binary output. In summary, the core of the problem is to

determine the incremental effect of an additional result, for a given
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search query, on the probability of booking (conversion):

𝐵𝑜𝑜𝑘𝐼𝑛𝑐𝑟𝑞𝑟𝑦 =
𝑃 (𝐵 = 1|𝑅 + 1)
𝑃 (𝐵 = 1|𝑅) (1)

where 𝐵 denotes if the search query eventually resulted in a booking

for the user (𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = (𝐵 = 1) if the query is linked to a

booking, 0 otherwise) and 𝑅 denotes the number of results for the

query (i.e. the amount of inventory).

3 HIDDEN EFFECT OF THE NUMBER OF
RESULTS ON CONVERSION

If we draw the relationship between number of results and conver-

sion, we observe a negative relationship, i.e. the more results the

worse the conversion rate. Figure [1] depicts this relationship on a

random sample of user queries.

Figure 1: Average conversion rate per number of results

This is counter-intuitive as we would expect that more inventory

would lead to higher probability of conversion.What we are actually

observing is the effect of a user’s intent to book. Users on Airbnb

can either be in an early exploration phase, or ready to make the

booking for their next trip. We refer to this as the "intent to book"

for a search query. The assumption is that users with high intent to

book tend to input more criteria and therefore limit the inventory

returned. While a user can just be "exploring" with broad searches,

a user with higher intent is generally more precise with location,

budget and amenities. The result of this phenomenon is that a low

inventory is indicative of a high intent and therefore positively

correlates with conversion. In order to encode these assumptions

on the casual relationships, we will use causal graphs to help us

derive an identification [4], [6] of the impact of number of results

on conversion. Figure [2] illustrates this problem, where Intent is a

latent (unobserved) variable.

Upon initial inspection, one possible way to approach the prob-

lem would be to model the likelihood of booking based on the

number of search results. For example, we could fit a logistic regres-

sion of 𝐵 on the number of results. However, this approach would

pose an identification issue, as the user’s intent drives the number

of search results down while positively influencing booking con-

version. Such an approach would not allow to identify what would

happen if we added more results to a query.
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Figure 2: Unidentified model with latent variable
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Figure 3: Unidentified model with latent variable 2

4 CLOSING THE BACKDOOR PATH OF
INTENT

From Figure [2], we are interested in identifying 𝜆𝑟𝑐 : the causal

effect of the number of results on conversion. If there is no Intent

to book (𝐼 = 0), the probability to book is null:

• 𝑃 (𝐵 = 1|𝐼 = 0) = 0

• 𝑃 (𝐵 = 1|𝑅) = 𝑃 (𝐵 = 1|𝑅, 𝐼 = 1) × 𝑃 (𝐼 = 1).
Therefore, eq. 1 can be written incorporating Intent 𝐼 as:

𝐵𝑜𝑜𝑘𝐼𝑛𝑐𝑟𝑞𝑟𝑦 =
𝑃 (𝐵 = 1|𝑅 + 1, 𝐼 = 1)
𝑃 (𝐵 = 1|𝑅, 𝐼 = 1) (2)

The mechanism by which Intent causes the number of results is

indirect; it happens through the parameters of the query 𝑄𝑃 (e.g.

map zoom, price filter, amenities requirements etc.) as depicted in

Figure [3].

𝑄𝑃 blocks the backdoor path of Intent as the effect of Intent on

number of results is unconfounded by the query parameters [5].

𝑄𝑃 is observable, we therefore condition Conversion on the query

parameters 𝑄𝑃 and rewrite equation 2 as follows:

𝐵𝑜𝑜𝑘𝐼𝑛𝑐𝑟𝑞𝑟𝑦 =
𝑃 (𝐵 = 1|𝑅 + 1, 𝑄𝑃, 𝐼 = 1)
𝑃 (𝐵 = 1|𝑅,𝑄𝑃, 𝐼 = 1) . (3)

Using Bayes theorem we obtain:

𝐵𝑜𝑜𝑘𝐼𝑛𝑐𝑟𝑞𝑟𝑦 =
𝑃 (𝑅 + 1 |𝐵 = 1,𝑄𝑃, 𝐼 = 1) × 𝑃 (𝑅 |𝑄𝑃, 𝐼 = 1)
𝑃 (𝑅 |𝐵 = 1,𝑄𝑃, 𝐼 = 1) × 𝑃 (𝑅 + 1 |𝑄𝑃, 𝐼 = 1) (4)

For additional steps in obtaining the result, please refer to Appendix

A.

According to the causal relationships hypothesized in Figure [3]:

• 𝐼𝑛𝑡𝑒𝑛𝑡 ⊥ 𝑅 |𝑄𝑃 ,
• 𝐼𝑛𝑡𝑒𝑛𝑡 ⊥ 𝑅 | (𝑄𝑃, 𝐵).

Therefore we can rewrite

𝐵𝑜𝑜𝑘𝐼𝑛𝑐𝑟𝑞𝑟𝑦 =
𝑃 (𝑅 + 1 |𝐵 = 1,𝑄𝑃 ) × 𝑃 (𝑅 |𝑄𝑃 )
𝑃 (𝑅 |𝐵 = 1,𝑄𝑃 ) × 𝑃 (𝑅 + 1 |𝑄𝑃 ) (5)
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With this equation, we have closed the backdoor path of Intent.

As a result, computing the incremental impact of number of re-

sults only requires us to estimate the law behind 𝑃 (𝑅) and 𝑃 (𝑅 |𝐵 =

1):
• 𝑃 (𝑅 |𝑄𝑃): Number of results given the query parameters as

features,

• 𝑃 (𝑅 |𝐵 = 1, 𝑄𝑃): Number of results for users who made a

booking given the query parameters.

The results count variable, 𝑅, can reasonably be assumed to follow a

Poisson distribution. However, it is important to re-evaluate this as-

sumption based on the specific application. Alternative approaches

such as a negative binomial regression or zero-inflated models can

be considered as viable options [1]. Here we choose to estimate

𝑃 (𝑅 |𝑄𝑃) and 𝑃 (𝑅 |𝐵 = 1, 𝑄𝑃) using a Poisson regression, following

the Poisson distribution assumption.

One might observe that our solution bears a resemblance to a

propensity score matching approach, as demonstrated by matching

queries with the same number of expected results but different

actual results, then comparing their conversion rates. In Appendix

B, we provide additional details on how our solution can be framed

using propensity score matching.

5 COMPUTING THE LIS METRIC
In Section 4, we established that to compute our LIS metric we need

to:

• train a model estimating the number of results given the

query parameters,

• train a model estimating the number of results for users who

made a booking given the query parameters,

• derive the incremental value of an additional search result

for each query given the two estimations and actual number

of results.

5.1 Poisson modeling
We seek to estimate the number of results returned by a search

query using a Poisson regression, where the features are the query

parameters denoted by𝑄𝑃 . To account for potential non-linearities

and interactions between the query parameters, we used a boosted

regression tree (BRT) model, which combines multiple decision

trees via an additive, gradient-boosting algorithm [3].

Specifically, we fit two BRT models using the number of results

as the response variable and the query parameters 𝑄𝑃 as the input

variables. One model is trained on all searches and the second

model is trained only on searches of guests who made a subsequent

booking. The resulting models allow us to estimate the expected

number of search results, 𝜆, and the expected number of results

when a booking was made, 𝜆𝐵=1.

For illustrative purposes, we provide below a non exhaustive list

of features from 𝑄𝑃 :

• query type (city, address, point of interest etc.)

• Map radius

• Filters used (e.g. price, amenity etc.)

• Number of guests

• Number of bedrooms

• Number of nights

• Lead time (days before check-in)

5.2 Deriving the LIS metric
Once the number of search results has been estimated, the incre-

mental impact of an additional result on conversion, following

equation 4, is derived as follows:

IncrBook(𝜆𝐵=1, 𝜆, 𝑅) =
𝑃 (𝜆𝐵=1, 𝜇 = 𝑅 + 1) × 𝑃 (𝜆, 𝜇 = 𝑅)
𝑃 (𝜆𝐵=1, 𝜇 = 𝑅) × 𝑃 (𝜆, 𝜇 = 𝑅 + 1) , (6)

where,

• 𝑃 (𝑘, 𝜇) denotes the probability mass function (PMF) of the

Poisson distribution of paramter 𝜇,

• 𝜆 is the estimated number of results given 𝑄𝑃 ,

• 𝜆𝐵=1 is the estimated number of results for bookers given

𝑄𝑃 ,

• 𝑅 is the observed number of results for the search query.

The ratio value Incr(𝜆𝐵=1, 𝜆, 𝑅) can be interpreted as the increase
in likelihood of conversion for one additional result to the search

query. For example, an estimation value of 1.1 implies that one

additional result renders a 10% increase in conversion.

In practice this ratio metric can be used directly as a continuous

measure or bucketized (e.g. LIS searches and none LIS searches).

The bucketization can be done in various manners depending on

the application. For the binary case, examples include:

• setting a classification threshold based on share of searches

classified as LIS or

• identifying all searches with a specified gain in conversion

or more from an additional result.

Python code to compute Incr(𝜆𝐵=1, 𝜆, 𝑅) is available in Appendix

C.

6 ASSESSMENT ON SIMULATED DATA
We leverage a simulated data experiment to assess the efficacy of

our model, ensuring it accurately estimates the true effect, which in

practice cannot be directly observed due to the presence of hidden

latent variables [10].

6.1 Simulation process
We design a simulation that adheres to the causal relationships

presented in Figure [3]. The detailed simulation steps to generate

the data are available in the appendix C with a brief description

provided in this section. We generate simulated data as follows:

(1) randomly generate a user’s intention to book: 0 or 1 (intent),

(2) if intent is 1 then assign a higher probability that filtering (0

or 1) is used,

(3) generate the number of results from a Poisson distribution

with the rate parameter influenced by filtering (if filtering is

used, we draw less results).

(4) Finally, randomly generate a binary booking outcome:

(a) 0, if intent is 0,

(b) 𝑏𝑖𝑛𝑜𝑚(𝑝), with p scaling with the number of results if

intent is 1.

(5) The true incremental impact (not observable in the real world

context)
𝑃 (𝐵=1 |𝑅+1)
𝑃 (𝐵=1 |𝑅) is also computed for each simulated data

point.
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6.2 Benchmark
We benchmark the performance of our methodology against a non-

causal approach of directly modeling 𝑃 (𝐵 |𝑅,𝑄𝑃) and extracting the
marginal impact of 𝑅 on 𝑃 (𝐵), with 𝑄𝑃 serving as a control. More

specifically, we fit a logistic regression of 𝐵 on 𝑅 and 𝑄𝑃 . We refer

to this comparative approach as “direct booking method”, and the

causal inference methodology presented in this paper as “LIS”. In
practice and in the literature it is common to evaluate the impact

of the number of search results using a fixed threshold, e.g. “does

the search have more than 10 results returned?”. We, however, do

not benchmark against this method as it is possible to generate

simulated data such that a fixed threshold would perform worse

than random.

6.3 Simulation results
6.3.1 Simulation for formula validation. Our first simulation serves

as a validation of the formula. Simulation (1) respects the strict

assumptions that results are drawn from a Poisson distribution and

conversion is linearly derived from the number of results. We can

observe in Figure [4] that the estimation of the odds ratio produced

by the "LIS" method (conditional on user intent) is exactly what is

observed in the data. Conversely, the estimation from the "direct

booking method" falls short, underestimating the decline in the odd

ratio as the number of results increases.

Figure 4: simulation (1): True Odd ratio VS LIS estimated
True odd ratio and LIS estimation exhibit complete overlap. The direct booking

estimation yields two lines (depending on filtering status).

6.3.2 Simulation against benchmark. Simulation (2) is designed to

compare the performance of our method vs the “direct booking

method” under the scenario when data is generated in amanner that

favors the benchmark. Data is generated by drawing results from

over-dispersed data (violating the Poisson distribution assumption),

and the impact of results on conversion is computed using a linear

logistic transform, the same specification and assumptions as the

direct booking method.

We focus on comparing each method’s ability to estimate the

ground truth odds ratio for two key classes of queries: (1) user

queries with filtering applied, and (2) queries with no filtering.

Each class of queries should have varying levels of impact from a

lack of search results, specifically we should observe:

(1) For queries with filtering, the impact (odds ratio) of fewer

search results should be larger. Users who filter are more

likely to be high intent, therefore the number of search re-

sults will presumably impact their booking outcome more.

(2) For queries without filtering, the impact (odds ratio) should

be less, as users without filtering are lower intent and there-

fore their chances of booking are low regardless of the num-

ber of search results.

(3) For both classes of queries, the impact on conversion should

exponentially decay with the number of search results.

It is most important, and the main evaluation criteria, that each

method can properly capture the above trends. The final applica-

tion of any method to identify low inventory searches will require

us to set some classification threshold. Therefore, as long as the

estimations follow the proper trends with respect to query types

and number of results, the method will be valuable for identifying

low inventory states.

Figures [5] and [6] present the estimation results for eachmethod

for filtered queries and unfiltered queries respectively. For readabil-

ity purposes we choose to display the z-score of the estimations.

Despite the intentional misspecification of the generated data, the

LIS method more closely estimates the ground truth odds ratio.

Most importantly, it captures all the desired trends with respect to

the classes of queries and number of results. The decay shape of the

LIS method is only weakly aligned with the ground truth. This is

due to the Poisson distribution assumption, a low variance estimate

is connected to a low probability value from the pmf; therefore,

pulling the estimates down for the low number of search results

scenarios.

Figure 5: Observed and estimated odd ratios when filtering

In contrast, the direct booking method does not capture well the

differences in impact between the two classes of queries, nor does it

follow the exponential decay shape of the ground truth. Themethod
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Figure 6: Observed and estimated odd ratios without filtering

suffers from an identification issue as it is not able to account for

the confoundedness of intent (through filtering) on the relationship

between the number of results and conversion. More specifically,

users with high intent are more likely to obtain fewer results but

still have a high chance to book, whereas users with less intent

observe more results but have low probability of booking. This

results in the trend that conversion is negatively correlated with

the number of results, as shown in Figure [7]. Including filtering as

a feature in the logistic regression helps mitigate this phenomenon,

but as shown in the estimation results it is not enough to capture

the true relationship between conversion and the number of search

results.

Figure 7: Correlation between number of results and conver-
sion (simulation)

7 ASSESSMENT ON USER QUERIES
7.1 Validity of LIS on Airbnb data
When dealing with real user queries, we don’t have access to any

ground truth. We, therefore, cannot make any precise assessments

of the model performance, but we can bring a body of evidence

which shows that the model is useful for our main use case: identi-

fying search queries for which user conversion suffers from a low

amount of inventory.

Given a low number of results is correlated with intent and

therefore conversion, we do not want to directly predict conversion

using LIS. However, we can condition on the number of search

results, and evaluate if LIS detects lower conversion. In Figure

[8] we show that within each bucket of number of results, low

inventory state correlates with a worse rate of conversion.

Figure 8: Conversion rate for LIS and non-LIS identified
searches across varying number of search results

More directly, we can assess the validity of our causal infer-

ence methodology by analyzing its observable implications [9]. We

achieve this by comparing conversion rates across three key in-

puts into our LIS metric: (1) the expected number of results for a

search, (2) the expected number of results for only bookers, and (3)

the observed number of results. Note that the values for expected

number of results are produced by our BRT Poisson model. If the
mechanics behind our causal formula are valid, we should expect

the following trends:

• The larger the positive difference between the expectation of

the number of results for bookers and the observed number

of results→ the greater the incremental impact of LIS, and

• the larger the positive difference between the expectation

of the number of results for all searchers and the observed

number of results→ the greater the incremental impact.

We can see in Figure [9] that the conversion rate is worse (i.e.

greater incremental impact) when the positive difference between

the expectation of the numbers of results (for all searches or book-

ers) and the number of observed results is large. Therefore validat-

ing our causal inference methodology.

7.2 Product Applications
In practice, our LIS metric can be leveraged both offline and online

to improve the user search experience. Offline, we can compute

the metric for experiments and analyze how new innovations are

driving guests to more or less low inventory states. Additionally,

we can utilize the metric for analytics to identify opportunities to

improve the search experience, e.g. flagging product paths where
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Figure 9: Conversion versus expectations and outcome

guests often find themselves in a low inventory state. Finally, our

metric can be scored online and used to power or as an input to

product features, e.g. as the triggering criteria for product inter-

ventions to help guests who find themselves with limited available

inventory for their search.

It is worth noting that we currently focus on the incremental im-

pact of one additional result. However, depending on the application

it could be more appropriate to assess the impact of a percentage

increase in results, e.g. 10%more results. Given the non-linear shape

of the odds ratio of incremental impact the distance of the compara-

tive point can influence which search queries are flagged as having

the highest potential improvements to conversion.

7.3 Application to Inventory management
Another area where our LIS estimator can be applied is inventory

management and supply acquisition. The LIS metric directly identi-

fies if a searcher would benefit from more supply for their search,

therefore guiding us on what locations and types of guests are most

in need of additional supply. A big advantage is that the metric

works at the search level which comes with useful dimensions

such as number of guests, accommodation type, price point, etc.

This granularity allows us to provide actionable insights e.g. "users

searching for 5 guests accommodations in Long Beach are facing a

high share of LIS states".

For example, if we take the large Los Angeles market, we can

tell that searches in the following areas have a high rate of LIS;

Long Beach, Santa Monica, Malibu Beach, while the following areas

have a relatively low share of LIS states; Anaheim, West Hollywood,
Inglewood (see figure [10]). These insights directly inform us as to

where we should, and should not, focus our supply management.

8 CONCLUSION & FUTUREWORK
In this paper, we presented a causal framework on how the number

of results returned for a search query can impact a user’s booking

conversion for Airbnb Search. From this framework, we derived a

methodology to identify search queries for which the amount of

inventory returned is preventing booking conversion. We demon-

strated via simulated data experiments and an assessment on real

Figure 10: Share of LIS searches per location in Los Angeles

user queries the validity of our causal model, and its superior per-

formance compared to alternative non-causal methods. Finally, we

showcased some product and business applications of our new

metric.

In the future we can explore alternative modeling approaches for

estimating the expected number of search results for bookers and

all searchers. We currently utilize Poisson regression, but a negative

binomial approach may perform better given the high dispersion

of the number of search results. Ultimately, any improvements in

our ability to estimate the expected number of results will lead to

an improvement in our ability to identify search queries with an

insufficient number of results returned.
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Appendices

A SUPPLEMENTARY STEPS TO OBTAIN THE
RESULTS ON INCREMENTALITY

𝐵𝑜𝑜𝑘𝐼𝑛𝑐𝑟𝑞𝑟𝑦 =
𝑃 (𝐵 = 1|𝑅 + 1, 𝑄𝑃, 𝐼 = 1)
𝑃 (𝐵 = 1|𝑅,𝑄𝑃, 𝐼 = 1)

Using Bayes theorem, we can rewrite the numerator and denom-

inator as follows:

𝑃 (𝐵 = 1 |𝑅 + 1,𝑄𝑃, 𝐼 = 1) =
𝑃 (𝑅 + 1 |𝐵 = 1,𝑄𝑃, 𝐼 = 1) × 𝑃 (𝐵 = 1 |𝑄𝑃, 𝐼 = 1)

𝑃 (𝑅 + 1 |𝑄𝑃, 𝐼 = 1)

𝑃 (𝐵 = 1 |𝑅,𝑄𝑃, 𝐼 = 1) =
𝑃 (𝑅 |𝐵 = 1,𝑄𝑃, 𝐼 = 1) × 𝑃 (𝐵 = 1 |𝑄𝑃, 𝐼 = 1)

𝑃 (𝑅 |𝑄𝑃, 𝐼 = 1)

and obtain

𝐵𝑜𝑜𝑘𝐼𝑛𝑐𝑟𝑞𝑟𝑦 =
𝑃 (𝑅 + 1 |𝐵 = 1,𝑄𝑃, 𝐼 = 1) × 𝑃 (𝑅 |𝑄𝑃, 𝐼 = 1)
𝑃 (𝑅 |𝐵 = 1,𝑄𝑃, 𝐼 = 1) × 𝑃 (𝑅 + 1 |𝑄𝑃, 𝐼 = 1)

B RELATIONSHIP WITH PROPENSITY SCORE
MATCHING

We can also frame the same solution with a propensity score ap-

proach. We can view the treatment (𝑇𝐸) as adding one additional

result and therefore write the treatment effect (𝑇𝐸) as follows:

(𝑇 = 1) = 𝑅 + 1

(𝑇 = 0) = 𝑅

𝑇𝐸 = 𝑃 (𝐵 = 1|𝑅 + 1, 𝑄𝑃)𝑃 (𝐵 = 1|𝑅,𝑄𝑃)
𝑇𝐸 = 𝑃 (𝐵 = 1|𝑇 = 1, 𝑄𝑃)𝑃 (𝐵 = 1|𝑇 = 0, 𝑄𝑃)

Here 𝑄𝑃 (query parameters) is a list of covariates such as

𝑄𝑃 ⊥ 𝑇 |𝑏 (𝑄𝑃)

where b(x) is a balancing score i.e. a function of the observed co-

variates 𝑥 such that the conditional distribution of 𝑥 given 𝑏 (𝑥) is
the same for treated (T = 1) and control (T = 0) [2]

A fitting propensity score (that is a balancing score) in that

context is:

𝑏 (𝑄𝑃) = 𝑃𝑟 (𝑅 |𝑄𝑃) (7)

Searches that have the same balancing score, in this case the same

expectation of number of results can serve as unbiased subjects to

estimate the treatment effect.

The above shows that the same methodology of first estimating

the expected number of results given the search parameter to derive

the effect on an additional result can be framed as a propensity

score matching method.

C SIMULATION CODE

1 # for data validation

2 def simulate_dataset(num_samples):

3 dataset = []

4 for _ in range(num_samples):

5 intent = random.choice ([0, 1])

6 filtering = simulate_filtering(intent)

7 num_results = simulate_num_results(

filtering)

8 has_booked = simulate_has_booked(intent ,

num_results)

9 odd_ratio_results = odd_ratio(intent ,

num_results)

10

11 data_point = {

12 'intent ': intent ,

13 'filtering ': filtering ,

14 'num_results ': num_results ,

15 'has_booked ': has_booked ,

16 'odd_ratio_results ': odd_ratio_results

17 }

18 dataset.append(data_point)

19

20 return dataset

21

22 def simulate_filtering(intent):

23 if intent == 0:

24 return random.choices ([0, 1], weights

=[0.8, 0.2]) [0]

25 else:

26 return random.choices ([0, 1], weights

=[0.2, 0.8]) [0]

27

28

29 def simulate_num_results(filtering):

30

31 base_rate = 10 # Base rate of num_results

32 rate_multiplier = 1

33

34 if filtering == 0:

35 rate_multiplier *= 2.5 # Increase rate if

filter is 0

36

37 num_results = int(poisson.rvs(base_rate *

rate_multiplier)) + 1

38 return num_results

39

40 def logistic(r):

41 return r / 100

42

43 def simulate_has_booked(intent , num_results):

44 w = logistic(num_results)

45 if intent == 0:

46 return 0

47 else:

https://doi.org/https://doi.org/10.1002/sim.9628
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48 return random.choices ([0, 1], weights =[1-w

, w])[0]

49

50 def odd_ratio(intent , num_results):

51 if intent == 0:

52 return 1

53 else:

54 return logistic(num_results + 1) /

logistic(num_results)

55

56 def incr_poisson(lbda_booked , lbda , num_res):

57 numerator = poisson.logpmf(num_res + 1, mu =

lbda_booked + num_res + 1) + poisson.

logpmf(num_res , mu=lbda + num_res , loc = -

num_res)

58 denominator = poisson.logpmf(num_res , mu =

lbda_booked + num_res , loc = -num_res) +

poisson.logpmf(num_res + 1, mu=lbda +

num_res + 1, loc = -num_res -1)

59 # scipy does not allow non for non int values ,

60 # we use a trick to account for the exact

differnce to 3 dec points

61 return max(1, np.exp(numerator - denominator))

62

63 # second simulation with more realistic data

64 def simulate_dataset(

65 num_samples ,

66 p_filter_intent =0.9,

67 p_filter_no_intent =0.2,

68 intercept = -1,

69 coef = 0.03):

70 dataset = []

71 for _ in range(num_samples):

72 intent = random.choice ([0, 1])

73 filtering = simulate_filter(intent ,

p_filter_intent , p_filter_no_intent)

74 num_results = simulate_num_results(

filtering)

75 has_booked = simulate_has_booked(intent ,

num_results , intercept , coef)

76 odd_ratio_results = odd_ratio(intent ,

num_results , intercept , coef)

77

78 data_point = {

79 'intent ': intent ,

80 'filtering ': filtering ,

81 'num_results ': num_results ,

82 'has_booked ': has_booked ,

83 'odd_ratio_results ': odd_ratio_results

,

84 }

85 dataset.append(data_point)

86

87 return dataset

88

89 def simulate_filter(intent , p_filter_intent ,

p_filter_no_intent):

90 if intent == 0:

91 return random.choices ([0, 1], weights =[1-

p_filter_no_intent , p_filter_no_intent

])[0]

92 else:

93 return random.choices ([0, 1], weights =[1-

p_filter_intent , p_filter_intent ])[0]

94

95

96 def simulate_num_results(filtering):

97 base_rate = 35 # Base rate of num_results

98

99 rate_multiplier = 1

100

101 if filtering == 0:

102 rate_multiplier *= random.choices ([1.5, 2,

3])[0]

103 # Increase rate of results randomly if

filter is 0

104 # different option allows more dispersion

105

106 num_results = max(10, min(150,

107 int(poisson.rvs(mu = rate_multiplier *

base_rate + 20 , loc=-20))))

108 # loc allows to increase the dispersion

109 return num_results

110

111 def logistic(r, intercept , coef):

112 results_spec = coef*r - intercept

113 return 1 / (1 + math.exp( -1*( results_spec ) )

)

114

115 def simulate_has_booked(intent , num_results ,

intercept , coef):

116 if intent == 0:

117 return 0

118 else:

119 w = logistic(num_results , intercept , coef)

120 return random.choices ([0, 1], weights =[1-w

, w])[0]

121

122 def odd_ratio(intent , num_results , intercept , coef

):

123 if intent == 0:

124 return 1

125 else:

126 return logistic(num_results + 1, intercept

, coef) / logistic(num_results ,

intercept , coef)

127

128 # Usage

129 dataset = pd.DataFrame(

130 simulate_dataset(

131 100000 ,

132 p_filter_intent =0.75,

133 p_filter_no_intent =0.25,

134 intercept =0.5, coef =0.05
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135 )

136 )

137

138 # Model training

139

140 ## logistic regression

141 features = ['filtering ','num_results ']

142 target = 'has_booked '

143 # Create the logistic regression model

144 model = LogisticRegression ()

145

146 # Fit the model

147 model.fit(dataset[features], dataset[target ])

148

149 # Make predictions

150 predictions = model.predict_proba(dataset[features

])[:,1]

151

152 dta_plus1 = dataset.copy()

153 dta_plus1['num_results '] = dataset['num_results ']

+ 1

154 predictions_plus1 = model.predict_proba(dta_plus1[

features ])[:,1]

155

156 # Apply the predictions to the original dataset

157 dataset['non_causal_odd_ratio '] =

predictions_plus1 / predictions

158

159 ## Poisson regression and LIS estimationm

160 booked_dataset = dataset[dataset['has_booked '] ==

1]. copy()

161 features = ['filtering ']

162 target = 'num_results '

163

164 model_p = PoissonRegressor(alpha = 0)

165 model_p_booked = PoissonRegressor(alpha = 0)

166

167 # Fit

168 model_p.fit(dataset[features], dataset[target ])

169 model_p_booked.fit(booked_dataset[features],

booked_dataset[target ])

170

171

172 # Make predictions on the original dataset

173 dataset['predicted_num_results '] = model_p.predict

(dataset[features ])

174 dataset['predicted_num_results_booked '] =

model_p_booked.predict(dataset[features ])

175 dataset['predicted_odd_ratio '] = dataset.apply(

lambda row: incr_poisson(row['

predicted_num_results_booked '], row['

predicted_num_results '], row['num_results ']),

axis =1)
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