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ABSTRACT
Multicollinearity is a long lasting challenge in observational causal
inference, especially under regressional settings — highly correlated
independent variables make it di�cult to isolate their individual
impacts on outcomes of interest. While common solutions such as
shrinkage estimators, principal component regressions, and par-
tial linear regression are helpful in prediction problems, a crucial
limitation hinders their applicability to causal inference problems
— they cannot provide the original causal relationships. To �ll the
gap, we present an innovative and intuitive solution, by employing
hierarchical clustering to aggregate data in a way that e�ectively
alleviates collinearity. This method is generally applicable to causal
problems featuring multicollinearity. We use a marketing applica-
tion to demonstrate how and why it works.

Expenditures on di�erent advertising channels often exhibit cor-
relations, making it exceedingly di�cult to separately measure their
impact. Many previous studies proposed to leverage granular cross-
sectional data for better identi�cation but, to our knowledge, none
explicitly addressed multicollinearity, which undermines causal
identi�cation even with granular data. We propose to hierarchi-
cally cluster geographic units based on marketing spend correlation
to reduce collinearity, and to implement a Bayesian Marketing Mix
Model with cluster-level data. Such clustering happens in two steps
— we �rst normalize and demean geo-level data to establish a com-
mon scale and to eliminate the common trends; we then calculate
pairwise distance to summarize marketing spend correlation be-
tween geos and cluster the ones with moderate to strong correlation.
Both descriptive evidence and regression analysis a�rm that such
hierarchical clustering e�ectively mitigates collinearity and facili-
tates the separate identi�cation of the impact of di�erent marketing
channels.

KEYWORDS
Marketing Mix Model, Hierarchical Bayesian, Hierarchical Cluster-
ing, Multicollinearity

1 INTRODUCTION
Everyday business inquiries frequently revolve around causal in-
ference, speci�cally seeking to understand the impact of particular
business decisions. To address this, three common approaches are
typically employed: A/B testing, quasi-experimentation, and obser-
vational causal inference methods. While A/B testing and quasi-
experimentation are often preferred due to their ability to provide
exogenous variation for identi�cation, their implementation can be

prohibitively costly or subject to biases resulting from business or
technical constraints. Observational causal inference methods, such
as matching methods, synthetic control, and double machine learn-
ing are designed to mitigate biases, but are not applicable to some
questions we aim to address given the data properties. Furthermore,
the aforementioned approaches are more e�ective in measuring the
causal impact of single interventions rather than attributing causal
impact holistically across multiple interconnected factors that may
contribute to the �nal outcome. In such scenarios, regression ap-
proaches provide a more suitable alternative. Regression methods
only necessitate aggregated panel data to concurrently identify
the causal impact of multiple factors. However, two challenges
undermine our ability to con�dently a�rm that the estimated pa-
rameters from regression methods represent the true causal impact.
These challenges are the existence of confounding factors and mul-
ticollinearity among covariates. While common solutions such as
shrinkage estimators, principal component regressions, and partial
linear regression are helpful in prediction problems, a crucial lim-
itation hinders their applicability to causal inference problems —
they cannot provide the original causal relationships.

This paper introduces a novel approach that speci�cally ad-
dresses the second challenge, namely multicollinearity. To illus-
trate the practical application and e�ectivenss of this approach, we
demonstrate its implementation in a marketing measurement con-
text (Marketing Mix Marketing) at Airbnb. We also conclude this
paper with a discussion on the broad applicability of this approach.

Inmarketing, one question of paramount importance is to causally
attribute sales to spend across channels - such as Google Search,
YouTube, Display, etc. However, advertisers often allocate their ex-
penditures across ad channels in a correlated manner, particularly
during peak seasons. When attempting to estimate a regression
model, highly correlated variables result in larger estimate vari-
ances and imprecise attribution of channel contributions to sales.
It is not uncommon to observe regression coe�cients switching
signs when highly correlated inputs are introduced, consequently
undermining the con�dence of business stakeholders in the model
results.

In this marketing application, we have access to panel data con-
sisting of ad impressions categorized by channel and geographic
location (Designated Market Area, or DMA) over a speci�c time pe-
riod. When we analyze the data by pooling all geographic locations
together, we observe a high level of cross-channel correlation. How-
ever, it is worth noting that certain geographic locations exhibit
higher cross-channel correlations compared to others. To address
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the issue of multicollinearity, we propose a novel approach that
leverages the variations in correlation patterns across di�erent ge-
ographic locations. The objective is to restructure the data in a
way that signi�cantly reduces the multicollinearity problem. Our
proposed method involves utilizing hierarchical clustering to group
geographic locations based on their correlation patterns. The key
aspect of this approach lies in de�ning the distance metric used in
the clustering algorithm.

In our methodology, we de�ne the distance between two DMAs
as the sum of channel-speci�c distances. Each channel-speci�c
distance measures the similarity in the cross-channel correlation
between the two geographic locations. By incorporating this dis-
tance metric into the hierarchical clustering process, we can e�ec-
tively group the DMAs in a manner that minimizes multicollinear-
ity across channels. This innovative approach allows us to trans-
form the data structure, mitigating the challenges posed by mul-
ticollinearity and providing a more robust foundation for further
analysis. By adopting this methodology, we can improve our un-
derstanding of the causal relationships between channels and accu-
rately attribute their impact on sales or other relevant outcomes.
We will demonstrate this improvement with both data descriptive
evidence and regression results.

The remainder of this paper is organized as follows. In section
2, we describe the Marketing Mix Modelling (MMM) problem for-
mulation and the related work. In section 3, we present the data
properties that motivate our approach to reduce multicollinearity.
In section 4, we introduce Hierarchical Clustering and the distance
metric designed speci�cally to address the multicollinearity prob-
lem. In section 5, we show how this novel method improves results,
and in section 6, we brie�y discuss other applications that can
utilize this methodology.

2 BAYESIAN STRUCTURAL MODEL
FORMULATION

This paper focuses on providing an innovative and intuitive solu-
tion to the notorious multicollinearity problem. To demonstrate the
e�ectiveness of their approach, we apply it to a speci�c application
called Bayesian Marketing Mix Modeling (MMM), built upon Jin
et al. [10]. MMM is a widely applied method in the industry for esti-
mating the performance of various marketing channels in a holistic
manner. It takes into account factors such as seasonality, trend (rep-
resenting organic demand), andmix of di�erent marketing channels
when forecasting sales. 1

2.1 Marketing Mix Model Setup
We model sales as a non-linear function of seasonality, and adver-
tisement impressions of each channel with a Bayesian Model. Let 6
denote a DMA and C = 1, ...,) denote time (we use weekly data).

~6,C = `C_ + B40B>=0;8C~6,C + U/6,C +
 ’
:=1

V:�3(C>2: (G:,6,C ) + n6,C

There are  media channels, and ⌧ DMAs. G6,C is the impres-
sion of channel : at week C . Let ~6,C be the response variable at

1While experimentation can be used to measure the performance of some channels, it
is not always feasible due to practical constraints.

week C , which could be sales or log transformed sales. We in-
clude `C: , B40B>=0;8C~6,C , and contemporaneous correlation with
covariates /6,C to capture the evolution of organic sales over time.
�3(C>2: (G6,C ) is the transformed impressions that captures: (1) di-
minishing return; (2) lag of the e�ect; (3) carryover e�ect of the
impressions. Ng et al. [13] uses a di�erent formulation which only
estimates the saturation e�ect. In this paper, we adapt Google’s pro-
posed shape formulation ofmarketing e�ects that ismore �exible.[10]
The �3(C>2: function can be de�ned as:

�3(C>2::,6 =
✓Õ!

;=0 g
(;�\: )2
:

GC�;,<Õ!
;=0 g

(;�\: )2
:

◆d

d 2 (0, 1] captures (potentially diminishing) returns to scale;
g 2 (0, 1) governs the carryover rate over time; and \ indicates the
lagged peak e�ect.

2.2 Account for Confounding factors
While it is not the main focus of this paper, we take into account
confounding factors when modeling trend and seasonality in order
to properly capture organic demand. When modeling trend and
seasonality, it is crucial to strike the right balance between �exibility
and strictness – excessive �exibilitymay lead to over�tting, whereas
overly rigid parametric formulations can result in a poor �t of the
model. In this marketing use case, we can easily over�t a model that
performs poorly out of sample because we have high dimensional
parameters space - we have to estimate 4 parameters per channel.
Keeping this tradeo� in mind, in addition to including exponential
trend and sinusoidal seasonality following Jin et al. [10], we also
include as an additional covariate an index of Google Search query
volume for travel and accommodation brands excluding Airbnb
(/6,C in the above equation), to capture confounding factors that
a�ect organic demand contemporaneously.

3 DATA PROPERTIES
3.1 Pre-Process Data
We take two important steps to pre-process data in preparation for
descriptive analysis and modeling. First, we normalize bookings,
channel impressions, and the covariate to establish a common scale
across DMAs of di�erent sizes. This will make it easier (A) to inter-
pret the impact of a certain level of marketing activity; and (B) to
model the common trend and seasonality later. Second, we decom-
pose channel impressions into the common trend and seasonality
and residual variation across DMAs, so we can focus on correlation
in the residual variation next.

3.2 Characteristics of DMA-Level Data
There is a decent level of correlation between marketing channels
and DMAs, even after eliminating the common trend and seasonal-
ity across DMAs for each channel. As Figure 1 shows, the variation
in residual impressions is moderately to strongly correlated across
the �ve channels.2

Such correlation is more pronounced across some DMAs than
other DMAs. Figure 2 compares two sets of DMAs – DMAs in the

2We anonymize the channels as A, B, C, D, and E.
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Figure 1: Correlation of Residual Channel Impressions

Figure 2: Correlation of Residual Impressions Across DMAs

(a) Correlation Across DMAs in the Xth Ventile of Size: By Channel

(b) Correlation Across DMAs in the Yth Ventile of Size: By Channel

- th ventile of baseline sales exhibit extremely high correlation for
four out of the �ve marketing channels, while DMAs in the . th
ventile exhibit relatively little correlation for all channels.3

3Throughout this paper, DMA IDs and channel names have been anonymized, while
channel impressions have been indexed.

4 HIERARCHICAL CLUSTERING AS A NOVEL
SOLUTION TO MULTICOLLINEARITY

As overviewed in Section 1 and illustrated in Section 3, multi-
collinearity poses a fundamental challenge in separately measur-
ing the impact of di�erent marketing channels. While common
solutions such as shrinkage estimators, principal component re-
gressions, and partial linear regression are helpful in prediction
problems, a crucial limitation hinders their applicability to causal
inference problems — they cannot provide the original causal rela-
tionships for business interpretability.

To overcome this limitation, we propose a novel and intuitive
approach that de�nes distances and hierarchically clusters geo-
graphic areas in a way that e�ectively mitigates cross-channel
multicollinearity. We �rst calculate a pairwise distance or dissimi-
larity metric to summarize marketing spend correlation between
geos and then use that metric to cluster the geos with moderate to
strong correlation. For each channel : , we calculate the distance
between two DMAs 8 and 9 as follows, where -8: denotes the time
series of residual impressions, after eliminating the common trend
and seasonality, for channel : in DMA 8 .

⇡8BC0=248 9: = 1 �⇠>AA4;0C8>=(-8: ,- 9: )
We then calculate an overall distance across all channels, which is
the square-root of the sum of squared distances across the channels.

⇡8BC0=248 9 =

vut  ’
:=1

⇡8BC0=242
8 9:

This distance measure re�ects correlation between DMAs across
multiple channels and is used to hierarchically cluster DMAs. We
adopt a complete-linkage hierarchical clustering algorithm which
works as follows:[11][14]

(1) Start with assigning each DMA to its own cluster;
(2) Then proceed iteratively, joining the two most similar clus-

ters at each step, continuing until there is just a single cluster.
Distance or dissimilarity between two clusters is based on
the farthest pair.

This algorithm produces a dendrogram in Figure 3, which illus-
trates how DMAs are clustered at each step. The horizontal axis
lays out the DMAs while the vertical axis shows the distance. This
algorithm o�ers a lot of �exibility in how aggressively we want to
cluster DMAs or how many clusters we want to have – we can pick
any cuto� distance between 0 (i.e., each DMA in a separate cluster)
and 4 (i.e., all DMAs in one cluster).

We use a cuto� distance of 1.5, which corresponds to correlation
of at least 0.33 on average for each channel and produces 42 clusters,
but also consider alternative clustering strategies for sensitivity.
Intuitively speaking, we group DMAs that feature moderate to
strong correlation into the same cluster.

5 RESULTS
5.1 Hierarchical Clustering of DMAs
The hierarchical clustering approach produces intuitive results. We
visualize channel impressions over time across DMAs within each
cluster, con�rming that DMAs within the same cluster tend to have
highly correlated impressions over time for at least some channels.

2023-08-05 02:28. Page 3 of 1–6.
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Figure 3: Dendrogram Illustrating Hierarchical Clustering of DMAs

Figure 4 exempli�es such patterns using one small cluster (Clus-
ter 1) and one larger cluster (Cluster 4). Each chart illustrates the
variation in channel residual impression over time (the horizontal
axis) and across DMAs (the vertical axis). Within each cluster, the
color patterns over time are quite similar across DMAs for most
channels, re�ecting moderate to high correlation.

5.2 Descriptive Evidence Shows Clustering
Mitigates Multicollinearity

Descriptive evidence con�rms our intuition that hierarchical clus-
tering can e�ectively mitigate collinearity. By grouping moderately
to highly correlated DMAs into the same cluster, we have signif-
icantly reduced correlation in residual channel impressions. As
Figure 5 visualizes, correlation decreased generally across channels,
by 8% to 43%.

Further, as Figure 6 demonstrates, clustering preserves variation
in channel impressions both (A) within clusters over time and (B)
across clusters within the same time period. This is promising for
separately identifying the impact of di�erent channels using panel
data at the cluster-week level. When testing alternative cluster-
ing strategies, we consider the reduction in correlation and the
preservation of variation as two important criteria.

5.3 Regression Results Con�rm Clustering
Alleviates Multicollinearity

Panel linear regression analysis a�rms the e�ectiveness of this hier-
archical clustering method in mitigating collinearity and facilitating
the separate identi�cation of the impact of di�erent marketing chan-
nels. After clustering, channel coe�cient estimates are no longer
subject to the problem of �ipped signs when included together with
other channels, and instead produce mostly intuitive results.

Table 1 summarizes panel linear regression results before and
after clustering, with geo (DMA or cluster) �xed e�ects and week
�xed e�ects included throughout the di�erent speci�cations.4 As
Column 1 summarizes, most channel coe�cients are negative if
we use DMA-level data, while they would be positive if included
individually. After clustering, in Column 2, the results become
mostly intuitive – all four lower-funnel channels have positive
estimated impact on sales (three of which are signi�cant at 0.001

4All coe�cient estimates have been scaled by a constant.

Figure 4: Heat Maps of Channel Residual Impressions Across DMAs Over Time

(a) DMAs in Cluster 1

(b) DMAs in Cluster 4

2023-08-05 02:28. Page 4 of 1–6.
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Figure 5: Clustering Reduces Cross-Channel Correlation

Figure 6: Variation in Residual Channel Impressions Across Clusters Over
Time

level). The remaining channel with a negative coe�cient is upper-
funnel, where we expect extreme di�culty in detecting a lower
funnel impact. Finally, these �ndings are robust to weighting the
cluster based on the natural log of their baseline size.

5.4 Bayesian Model Results Using Cluster-Level
Data

Now that both descriptive evidence and frequentist regression anal-
ysis a�rm our hierarchical clustering approach e�ectivelymitigates
collinearity, we move forward to estimate the Bayesian model de-
scribed in Section 2 using data at the cluster level. Similar to the

Table 1: Panel Linear Regression Summary

DMA Level Cluster Level Cluster Level, Weighted

channel_a 5.570*** 5.041*** 5.227***
(0.075) (0.149) (0.146)

channel_b �0.055*** 0.128*** 0.097***
(0.014) (0.028) (0.027)

channel_c �0.003 0.043*** 0.038***
(0.004) (0.008) (0.007)

channel_d 0.007 0.007 0.009
(0.005) (0.010) (0.010)

channel_e �0.011*** �0.023** �0.025***
(0.003) (0.008) (0.007)

Num.Obs. 35 700 7140 7140
R2 0.862 0.946 0.946
R2 Adj. 0.861 0.944 0.944
AIC 113 008.3 34 358.7 48 912.9
BIC 114 492.8 35 561.6 50 115.8
RMSE 1.17 2.62 7.27
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

frequentist regressions, the Bayesian model also produces intuitive
results, even with uninformative priors. Figure 7 visualizes the pos-
terior distribution of channel-speci�c impact parameters (V) and
carryover rate parameters (g ). Consistently with frequentist regres-
sion results earlier, we estimate a higher impact for channels A and
B than the other channels.5 Furthermore, the carryover estimates
are also intuitive and consistent with our previous learning and
knowledge about the di�erent channels. For example, we expect
some carryover for Channels C, D, and E, but not for Channels A
and B, and it is reassuring that the estimates con�rm that under-
standing even though we are using uninformative priors.6

6 DISCUSSION OF BROADER APPLICATIONS
We have focused on an application in marketing mix modeling
to demonstrate how and why hierarchical clustering can mitigate
multicollinearity. However, this method is not constrained to the
setting of marketing and instead is generally applicable to obser-
vational causal inference problems featuring multicollinearity. In
our example, marketing data properties motivated us to cluster
geographic units based on correlation in marketing activities. In
other settings, one can decide which dimensions and criteria to use
for clustering based on relevant data properties. The dimension to
cluster data does not always have to be geographic. Futher more,
in some settings, natural clusters might exist for one to consider.

For example, in the context of Customer Service, we would like
to understand how customers’ each interaction with our support
agents contribute to the long term retention. However, oftentimes,
these interaction experience metrics are highly correlated, such
5Note that the impact parameter estimates here should be interpreted di�erently
from the frequentist panel linear regressions above, because the Bayesian structural
model also estimates parameters that transforms the impressions for each channel
into adstock based on the lag, carryover, and shape parameters. But we can still make
broad comparisons of the impact parameter across channels, taking into account the
other parameters.
6It is expected that the variance is high for the estimates of Channel E, such as the
carryover parameter. Unlike the other channels, Channel E is upper funnel, so it is
especially di�cult to estimate its impact on lower funnel conversions.

2023-08-05 02:28. Page 5 of 1–6.
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Figure 7: Posterior Distributions of Parameters

as wait time and abandon rate, etc. In this case, we can leverage
clustering to segment customer issue types into groups that have
di�erent degrees of correlation between wait and abandon rate.

7 CONCLUSION
In this paper, we propose to employ hierarchical clustering as an
innovative and e�ective approach to address multicollinearity in re-
gressional causal inference studies. It has several advantages. Firstly,
hierarchical clustering provides a systematic and comprehensive
method for identifying clusters that exhibit varying levels of mul-
ticollinearity, thus reducing the correlation of covariates across
clusters. Furthermore, clustering circumvents the need to trans-
form data into non-interpretable entities, as required by techniques
such as Principal Component Analysis or Partial Linear Regres-
sions. This ensures that the interpretability and meaningfulness of
the variables are preserved throughout the analysis. In addition to
its e�ectiveness, the proposed methodology is characterized by its
ease of implementation. It can be readily applied to diverse applica-
tions facing similar challenges related to multicollinearity. The key
lies in understanding the inherent properties of the data to de�ne
an appropriate distance metric for clustering that e�ectively re-
duces multicollinearity. This research contributes to enhancing the
robustness and reliability of regressional causal inference studies.
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